JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

BiBTeX citation export for MOIO02: BM18, the New ESRF-EBS Beamline for Hierarchical Phase-Contrast Tomography

  author       = {F. Cianciosi and A.-L. Buisson and P. Tafforeau and P. Van Vaerenbergh},
  title        = {{BM18, the New ESRF-EBS Beamline for Hierarchical Phase-Contrast Tomography}},
  booktitle    = {Proc. MEDSI'20},
  pages        = {1--5},
  eid          = {MOIO02},
  language     = {english},
  keywords     = {SRF, detector, experiment, vacuum, GUI},
  venue        = {Chicago, IL, USA},
  series       = {Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation},
  number       = {11},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {10},
  year         = {2021},
  issn         = {2673-5520},
  isbn         = {978-3-95450-229-5},
  doi          = {10.18429/JACoW-MEDSI2020-MOIO02},
  url          = {https://jacow.org/medsi2020/papers/moio02.pdf},
  note         = {https://doi.org/10.18429/JACoW-MEDSI2020-MOIO02},
  abstract     = {{BM18 is an ESRF-EBS beamline for hierarchical tomography, it will combine sub-micron precision and the possibility to scan very large samples. The applications will include biomedical imaging, material sciences and cultural heritage. It will allow the complete scanning of a post-mortem human body at 25 µm, with the ability to zoom-in in any location to 0.7 µm. BM18 is exploiting the high-energy-coherence beam of the new EBS storage ring. The X-ray source is a short tripole wiggler that gives a 300mm-wide beam at the sample position placed 172m away from the source. Due to this beam size, nearly all of the instruments are devel-oped in-house. A new building was constructed to ac-commodate the largest synchrotron white-beam Experi-mental Hutch worldwide (42x5-6m). The main optical components are refractive lenses, slits, filters and a chop-per. There is no crystal monochromator present but the combination of the optical elements will provide high quality filtered white beams, as well as an inline mono-chromator system. The energy will span from 25 to 350 keV. The Experimental Hutch is connected by a 120m long UHV pipe with a large window at the end, followed by a last set of slits. The sample stage can position, rotate and monitor with sub-micron precision samples up to 2,5x0.6m (H x Diam.) and 300kg. The resulting machine is 4x3x5m and weighs 50 tons. The girder for detectors carries up to 9 detectors on individual 2-axis stages. It moves on air-pads on a precision marble floor up to 38m behind the sample stage to perform phase contrast imag-ing at a very high energy on large objects. The commissioning is scheduled for the beginning of 2022; the first ’friendly users’ are expected in March 2022 and the full operation will start in September 2022.}},