JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


BiBTeX citation export for TUOB03: Ultra-Precision Mechanics for Fourth-Generation Sources

@unpublished{doehrmann:medsi2020-tuob03,
  author       = {R. Doehrmann and S. Botta and P. Wiljes},
  title        = {{Ultra-Precision Mechanics for Fourth-Generation Sources}},
  booktitle    = {Proc. MEDSI'20},
  language     = {english},
  intype       = {presented at the},
  series       = {Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation},
  number       = {11},
  venue        = {Chicago, IL, USA},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {10},
  year         = {2021},
  note         = {presented at MEDSI'20 in Chicago, IL, USA, unpublished},
  abstract     = {{Fourth-generation synchrotrons, with their extremely good beam conditions, offer experimental possibilities that go far beyond the current technological state of the art. These extremely brilliant x-ray sources enable, among other things with new focusing optics, focal sizes in the nanometer range with the highest intensity and thus allow for highly dynamic experiments also on this scale. In order to guarantee the required beam quality all the way down to the experiment, optimal conditions must be generated for the end stations and for the beamline optics. An optimum of stability and precision can unfortunately only be achieved if, on the one hand, the infrastructure that shields the experiments and enables undisrupted operation is planned very carefully. On the other hand, the scientific instruments must also be optimized and improved. Our strategy for the construction of the PETRA IV experiments is based on five pillars (low vibration, stable environment, rigid construction, optimized design and fast feedback). In this contribution, we describe these concepts in more detail. Furthermore, we present illustrative examples of a possible implementation at PETRA IV.}},
}