JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for TUPC15: A New Ultra-Stable Variable Projection Microscope for the APS Upgrade of 32-ID

TY  - CONF
AU  - Bean, S.J.
AU  - De Andrade, V.
AU  - Deriy, A.
AU  - Fezzaa, K.
AU  - Graber, T.
AU  - Matus, J.
AU  - Preissner, C.A.
AU  - Shu, D.
ED  - Jaski, Yifei
ED  - Den Hartog, Patric
ED  - Jaje, Kelly
ED  - Schaa, Volker R.W.
TI  - A New Ultra-Stable Variable Projection Microscope for the APS Upgrade of 32-ID
J2  - Proc. of MEDSI2020, Chicago, IL, USA, 24-29 July 2021
CY  - Chicago, IL, USA
T2  - Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation
T3  - 11
LA  - english
AB  - A new nano-computed tomography projection microscope (n-CT) is being designed as part the Advanced Photon Source Upgrade (APS-U) beamline enhancement at sector 32-ID. The n-CT will take advantage of the APS-U source and provide new capabilities to the imaging program at 32-ID. A Kirkpatrick and Baez (KB) mirror-based nanofocusing optics [1,2] will be implemented in this design. To meet the n-CT imaging goals, it is the desire to have sub 10 nanometer vibrational and thermal drift stability over 10-minute measurement durations between the optic and the sample. In addition to the stability requirements, it is desired to have a variable length sample projection axis of up to 450 mm. Such stability and motion requirements are challenging to accomplish simultaneously due to performance limitations of traditional motion mechanics and present a significant engineering challenge. To overcome these limitations, the proposed n-CT design incorporates granite air bearing concepts initially used in the Velociprobe [3]. These types of granite stages have been incorporated into many designs at APS [4] and at other synchrotron facilities [5]. Utilizing the granite air bearing concept, in tandem with other design aspects in the instrument, the requirements become reachable. A novel multi-degree of freedom wedge configuration is also incorporated to overcome space limitations. The design of this instrument is described in this paper.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 211
EP  - 214
KW  - focusing
KW  - optics
KW  - synchrotron
KW  - photon
KW  - interface
DA  - 2021/10
PY  - 2021
SN  - 2673-5520
SN  - 978-3-95450-229-5
DO  - doi:10.18429/JACoW-MEDSI2020-TUPC15
UR  - https://jacow.org/medsi2020/papers/tupc15.pdf
ER  -