Author: Bean, S.J.
Paper Title Page
TUPC10 Modular Nanopositioning Flexure Stages Development for APS Upgrade K-B Mirror Nanofocusing Optics 199
 
  • D. Shu, J.W.J. Anton, L. Assoufid, S.J. Bean, D. Capatina, V. De Andrade, E.M. Dufresne, T. Graber, R. Harder, D. Haskel, K. Jasionowski, S.P. Kearney, A.A. Khan, B. Lai, W. Liu, J. Maser, S.T. Mashrafi, G.K. Mistri, S. Narayanan, C.A. Preissner, M. Ramanathan, L. Rebuffi, R. Reininger, O.A. Schmidt, X. Shi, J.Z. Tischler, K.J. Wakefield, D. Walko, J. Wang, X. Zhang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Kirkpatrick and Baez (K-B) mirror-based nanofocusing optics* will be applied to many beamlines endstation instruments for the APS-Upgrade (APS-U) project. Precision nanopositioning stages with nanometer-scale linear positioning resolution and nanoradian-scale angular stability are needed as alignment apparatus for the K-B mirror hard X-ray nanofocusing optics. For instance, at the APS-U 19-ID In Situ Nanoprobe beamline endstation**, to maintain stability of a 20-nm focal spot on the sample, nanofocusing K-B mirror system with 5-nrad angular stability is required. Similar angular resolution and stability are also required for APS-U 9-ID CSSI***, APS-U 34-ID ATOMIC**** and other beamline endstation instruments. Modular nanopositioning flexure stages have been developed for the K-B mirror nanofocusing optics, which includes: linear vertical and horizontal flexure stages, tip-tilting flexure stages, and flexure mirror benders for bendable nanofocusing K-B mirrors, to overcome the performance limitations of precision ball-bearing-based or roller-bearing-based stage systems. The mechanical design and preliminary test results are described in this paper.
* Kirkpartrick and Baez, JOSA. 1948; 38(9): 766-773.
** S. Kearney et al., this conference.
*** J. Anton et al., this conference.
**** C. Preissner et al., this conference.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC10  
About • paper received ※ 02 August 2021       paper accepted ※ 21 October 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC15 A New Ultra-Stable Variable Projection Microscope for the APS Upgrade of 32-ID 211
 
  • S.J. Bean, V. De Andrade, A. Deriy, K. Fezzaa, T. Graber, J. Matus, C.A. Preissner, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
A new nano-computed tomography projection microscope (n-CT) is being designed as part the Advanced Photon Source Upgrade (APS-U) beamline enhancement at sector 32-ID. The n-CT will take advantage of the APS-U source and provide new capabilities to the imaging program at 32-ID. A Kirkpatrick and Baez (KB) mirror-based nanofocusing optics [1,2] will be implemented in this design. To meet the n-CT imaging goals, it is the desire to have sub 10 nanometer vibrational and thermal drift stability over 10-minute measurement durations between the optic and the sample. In addition to the stability requirements, it is desired to have a variable length sample projection axis of up to 450 mm. Such stability and motion requirements are challenging to accomplish simultaneously due to performance limitations of traditional motion mechanics and present a significant engineering challenge. To overcome these limitations, the proposed n-CT design incorporates granite air bearing concepts initially used in the Velociprobe [3]. These types of granite stages have been incorporated into many designs at APS [4] and at other synchrotron facilities [5]. Utilizing the granite air bearing concept, in tandem with other design aspects in the instrument, the requirements become reachable. A novel multi-degree of freedom wedge configuration is also incorporated to overcome space limitations. The design of this instrument is described in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC15  
About • paper received ※ 12 August 2021       paper accepted ※ 19 October 2021       issue date ※ 02 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB15 A Novel Vacuum Chamber Design for the APS Upgrade of the 26-ID Nanoprobe 296
 
  • S.J. Bean, P.N. Amann, M. Bartlein, Z. Cai, T. Graber, M. Holt, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Used resources of the CNM and the APS, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by ANL under Contract No. DE-AC02-06CH11357.
An enhancement design of an existing 26-ID nanoprobe [1] instrument (NPI) at APS is being completed as part of work for the APS-Upgrade (APS-U) project. As part of this enhancement design, a new vacuum chamber geometry configuration has been implemented that balances the desired simultaneous x-ray measurement methods with accessibility and serviceability of the nanoprobe. The main enabling feature on the vacuum chamber is a slanted mid-level vacuum sealing plane. The new chamber design geometrically optimizes the ability to perform simultaneous diffraction, fluorescence and optical or laser pump probe measurements on the sample. A large diffraction door geometry is strategically placed near the sample for ease of access. The newly designed chamber can be readily serviced by removal of the upper chamber section, on which most larger instrument assemblies or beamline attachments are not interfaced. The mechanical design intent and geometry of this chamber concept is described in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB15  
About • paper received ※ 12 August 2021       paper accepted ※ 19 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC13 Sample and Detector Positioning Instruments for the Wide Angle XPCS End Station at 8-ID-E, a Feature Beamline for the APS Upgrade 333
 
  • K.J. Wakefield, S.J. Bean, D. Capatina, E.M. Dufresne, M.V. Fisher, M.J. Highland, S. Narayanan, A. Sandy, R. Ziegler
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The X-ray Photon Correlation Spectroscopy (XPCS) beamline at the Advanced Photon Source (APS) has been selected as one of the nine feature beamlines being de-signed to take advantage of the increase in coherent flux provided by the APS Upgrade. The 8-ID-E enclosure at the beamline will have a dedicated instrument for per-forming Wide Angle XPCS (WA-XPCS) measurements across a range of length and time scales. The instrument will feature a high-stability 6-circle diffractometer, a moveable Long Distance Detector Positioner (LDDP) for positioning a large pixel array detector, and a removable flight path assembly. For intermediate sample to detector distances of 1.5 to 2 meters, a large pixel array detector will be positioned on the diffractometer detector arm. For longer sample to detector distances up to 4 meters, an horizontal scattering geometry will be utilized based on the LDDP to position a second large pixel array detector. The LDDP will consist of a large granite base on which sits a combination of motorized stages. The base will sit on air casters that allow the LDDP to be coarsely posi-tioned manually within the enclosure. Final positioning of the detector will be achieved with the mounted stages. The spatial relationship between the sample and the free moving LDDP will be monitored using a laser tracking system. A moveable flight path will be supported by the diffractometer arm and a mobile floor support to mini-mize air scattering while using the LDDP. The WA-XPCS instrument has been designed with users and beamline staff in mind and will allow them to efficiently utilize the highly enhanced coherent beam provided by the APS Upgrade.
 
poster icon Poster WEPC13 [1.363 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC13  
About • paper received ※ 12 August 2021       paper accepted ※ 29 October 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOA01 A Family of High-Stability Granite Stages for Synchrotron Applications 341
 
  • C.A. Preissner, S.J. Bean, M. Erdmann
    ANL, Lemont, Illinois, USA
  • M. Bergeret, J.R. Nasiatka
    LBNL, Berkeley, California, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Engineers at the APS have developed a granite, air-bearing stage concept that provides many millimeters of motion range and nanometer-level vibrational stability. This technique was first conceptualized and used on the Velociprobe x-ray microscope. The success of that design spurred adaption of the approach to over 90 devices, including many new instruments at the APS and high performing instruments at other synchrotrons. This paper details the design concept, some performance measurements, and new developments allowing for a six-degree-of-freedom device.
 
slides icon Slides THOA01 [12.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-THOA01  
About • paper received ※ 13 August 2021       paper accepted ※ 13 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOA02 A New Traveling Interferometric Scheme for the APS Upgrade of the 2-ID Bionanoprobe 345
 
  • S.J. Bean, S. Chen, T. Graber, C. Jacobsen, B. Lai, E.R. Maxey, T. Mooney, C.A. Preissner, X. Shi, D. Shu, J. Tan, W. Wojcik
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
The Advanced Photon Source (APS) at Argonne National Laboratory (ANL) is being upgraded to a multi-bend achromat (MBA) lattice storage ring which will increase brightness and coherent flux by several orders of magnitude. As part of this upgrade a total of 15 beamlines were selected to be enhanced to take advantage of the new source ’ these are designated as ’Enhanced Beamlines’. Among these is the enhancement to 2-ID, which includes an upgrade and move of the existing Bionanoprobe (BNP) from 9-ID [1]. This instrument will become the second generation Bionanoprobe II (BNP-II) with intent of studying cryogenic samples with sub-10 nm resolution. This upgrade requires a high performing metrology configuration and design to achieve the desired spatial resolution while adapting to the various constraints of the instrument. The cryogenic sample environment and detection constraints offer significant challenges for implementing a metrology scheme. In this paper we report on the new traveling interferometer configuration proposed for BNP-II.
 
slides icon Slides THOA02 [1.580 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-THOA02  
About • paper received ※ 29 July 2021       paper accepted ※ 13 October 2021       issue date ※ 29 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)