Author: Casas, J.J.
Paper Title Page
TUPB05 Investigation of Thermal Instabilities in the ALBA Cooling System, Based on Numerical Simulations and Experimental Measurements 153
 
  • F. Hernández
    ESEIAAT, Terrassa, Spain
  • E. Ayas, J.J. Casas, C. Colldelram, Ll. Fuentes, J. Iglesias, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  This paper presents an investigation into the thermal instability problems that currently affect the ALBA Cooling System. During these periods of instabilities, which occur for a few hours every week of operation, there are deviations up to +1.5 °C, concerning the nominal temperature of 23 ± 0.2 °C in the four rings of ALBA: Service Area, Booster, Storage and Experimental Hall. This problem has a direct impact on the quality of the beam of the Accelerator. Previous studies have preliminarily concluded that the causes of this problem are due to (1) thermohydraulic anomalies in the operation of the external cogeneration plant, which supplies cold water to ALBA, and (2) cavitation problems in the pumping system (the water mass flow has been reduced to 67% of its nominal value to temporarily mitigate the cavitation). In order to confirm these hypotheses and propose solutions to the problem, an investigation has been developed making use of one-dimensional thermohydraulic simulations, performing Computational Fluid Dynamic (CFD) studies, statistical evaluations of data taken from our control system, and systematic flow measurements in critical areas, with ultrasonic flowmeters. As a result of this research, a set of solutions and recommendations are finally proposed to solve this problem.  
slides icon Slides TUPB05 [2.933 MB]  
poster icon Poster TUPB05 [2.401 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB05  
About • paper received ※ 22 July 2021       paper accepted ※ 05 November 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB12 Assessment of the Corrosion of Copper Components in the Water Cooling System of ALBA Synchrotron Light Source; Presentation of a Proposal to Mitigate the Corrosion Rate of Copper 171
 
  • M. Quispe, E. Ayas, J.J. Casas, C. Colldelram, Ll. Fuentes, J.C. Giraldo, J. Iglesias, M. Pont
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J. Buxadera, M. Punset
    Technical University of Catalonia, The Biomaterials, Biomechanics and Tissue Engineering, Barcelona, Spain
 
  This paper presents the most recent results on the corrosion of copper components in ALBA water cooling system. The studies have been carried out using a variety of techniques: Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). Representative samples of the Accelerator Facility were examined: Storage Ring Absorbers, Front End Masks, Radio Frequency Cavity Pipes, Experimental Line Mask, Radio Frequency Plant Pipes at Service Area and Booster Quadrupole. The studies show the presence of intergranular, pitting and generalized corrosion. The presence of copper oxide is confirmed, as well as other elements such as Aluminum, Carbon, Sulfur, Silver, Calcium, Silicon, Titanium and Iron in some regions of the samples. Likewise, other elements from circulating water such as Potassium and Chlorine have also been detected. The depth of pitting corrosion is less than 119.4 um for the samples studied, after 10 years of operation. To minimize the corrosion problem, an upgrade of the ALBA cooling system is under study. The objective is to reduce the current corrosion rate by a conservative factor of 5. This change is possible by modifying the characteristics of the cooling water, reducing the dissolved oxygen content to values below 10 ppb and increasing the pH above 7.5. Technical aspects of this upgrade are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB12  
About • paper received ※ 23 July 2021       paper accepted ※ 16 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA12 X-Ray Facility for the Characterization of the ATHENA Mirror Modules at the ALBA Synchrotron 252
 
  • A. Carballedo, J.J. Casas, C. Colldelram, G. Cuní, D. Heinis, J. Marcos, O. Matilla, J. Nicolás, A. Sánchez, N. Valls Vidal
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • N. Barrière, M.J. Collon, G. Vacanti
    Cosine Measurement Systems, Warmond, The Netherlands
  • M. Bavdaz, I. Ferreira
    ESA-ESTEC, Noordwijk, The Netherlands
  • E. Handick, M. Krumrey, P. Mueller
    PTB, Berlin, Germany
 
  MINERVA is a new X-ray facility under construction at the ALBA synchrotron specially designed to support the development of the ATHENA (Advanced Telescope for High Energy Astrophysics) mission. The beamline design is originally based on the monochromatic pencil beam XPBF 2.0 from the Physikalisch-Technische Bundesanstalt (PTB), at BESSY II already in use at this effect. MINERVA will host the necessary metrology equipment to integrate the stacks produced by the cosine company in a mirror module (MM) and characterize their optical performances. From the opto-mechanical point of view, the beamline is made up of three main subsystems. First of all, a water-cooled multilayer toroidal mirror based on a high precision mechanical goniometer, then a sample manipulator constituted by a combination of linear stages and in-vacuum hexapod and finally an X-ray detector which trajectory follows a cylinder of about 12 m radius away from the MM. MINERVA is funded by the European Space Agency (ESA) and the Spanish Ministry of Science and Innovation. MINERVA is today under construction and will be completed to operate in 2022.  
poster icon Poster WEPA12 [1.175 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA12  
About • paper received ※ 21 July 2021       paper accepted ※ 19 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB16 CFD Predictions of Water Flow Through Impellers of the ALBA Centrifugal Pumps and Their Aspiration Zone. An Investigation of Fluid Dynamics Effects on Cavitation Problems 299
 
  • A. González Romero
    ESEIAAT, Terrassa, Spain
  • J.J. Casas, C. Colldelram, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Currently, the ALBA refrigeration system pumps present cavitation when operating at their nominal regime. To alleviate this phenomenon temporarily until a definitive solution was found, the water flow was reduced to 67% of its nominal value. As this flow exchanges heat with the cooling water produced in an external cogeneration plant, modifying the working point of the pumps resulted in a reduction of the Accelerator cooling capacity. However, even at such low flow conditions, the flow has an anomalous oscillatory behaviour in the distributor of the aspiration zone, implying that the cause may be in a bad dimensioning of the manifold. This paper presents a study of Computational Fluid Dynamics (CFD) applied to the aspiration zones of the pumps, to investigate the effects of fluid dynamics on cavitation problems and understand what may be happening in the system. The need for such research arises from the urge to recover the accelerator cooling capacity and the constant pursuit for the improvement of the system. The geometries for this study include the general manifold in the aspiration zone and a simplified model of the pump impeller. The simulations have been carried out with the ANSYS-FLUENT software. Studies performed include considering the total water flow in nominal and under current operating conditions. In addition, the cases in which the flow is distributed through the manifold tubes in uniform and non-uniform ways have been treated separately. Pressure and velocity fields are analysed for various turbulence models. Finally, conclusions and recommendations to the problem are presented.  
poster icon Poster WEPB16 [0.794 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB16  
About • paper received ※ 27 July 2021       paper accepted ※ 28 September 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)