Author: de Albuquerque, G.S.
Paper Title Page
MOPB03 Commissioning and Prospects of the High-Dynamic DCMs at Sirius/LNLS 25
 
  • R.R. Geraldes, J.L. Brito Neto, R.M. Caliari, M.A.S. Eleoterio, S.A.L. Luiz, M.A.L. Moraes, A.V. Perna, M.S. Silva, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The High-Dynamic Double-Crystal Monochromator (HD-DCM)*,** is an opto-mechatronic system with unique architecture, and deep paradigm changes as compared to traditional beamline monochromators. Aiming at unmatching scanning possibilities and positioning stability in vertical-bounce DCMs, it has been developed since 2015 for hard X-ray beamlines at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). Two units are currently operational at the MANACA (macromolecular crystallography) and the EMA (extreme conditions) undulator beamlines, whereas a model for extended scanning capabilities in the energy range between 3.1 to 43 keV, the so-called HD-DCM-Lite, is in advanced development stage for two new beamlines, namely: QUATI (quick absorption spectroscopy), with a bending-magnet source; and SAPUCAIA (small-angle scattering), with an undulator source. In this work, online commissioning and operating results of the HD-DCMs are presented with emphasis on: the 10 nrad RMS (1 Hz - 2.5 kHz) pitch-parallelism performance; energy calibration; energy-dependent beam motion at sample; and flyscan with monochromator-undulator synchronization, which is a well-known control challenge at beamlines. To conclude, the Sirius HD-DCM family prospects, including the HD-DCM-Lite, are discussed.
*Geraldes, R. R., et al. "The New High-dynamics DCM for Sirius." Proc. of MEDSI 2016.
**Geraldes, R. R., et al. "The Status of the New High-Dynamic DCM for Sirius." Proc. of MEDSI 2018.
 
poster icon Poster MOPB03 [1.829 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB03  
About • paper received ※ 25 July 2021       paper accepted ※ 01 October 2021       issue date ※ 02 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB04 Four-Bounce Crystal Monochromators for the Sirius/LNLS Beamlines 29
 
  • M. Saveri Silva, L.M. Kofukuda, S.A.L. Luiz, A.P.S. Sotero, H.C.N. Tolentino, L.M. Volpe, G.S. de Albuquerque
    LNLS, Campinas, Brazil
  • L. Martins dos Santos, J.H. Řežende
    CNPEM, Campinas, SP, Brazil
 
  Funding: Ministry of Science, Technology, and Innovation (MCTI)
Beamlines of new 4th-generation machines present high-performance requirements in terms of preserving beam quality, in particular wavefront integrity and position stability at micro and nanoprobe stations. It brings about numerous efforts to cope with engineering challenges comprehending high thermal load, cooling strategy, crystal manufacturing, vibration sources, alignment and coupled motion control. This contribution presents the design and performance of a four-bounce silicon-crystal monochromator for the Sirius beamlines at the Brazilian Synchrotron Light Source (LNLS), which is basically composed of two channel-cut crystals mounted on two goniometers that counter-rotate synchronously. The mechanical design ascertained the demands for the nanoprobe and coherent scattering beamlines - namely, CARNAÚBA and CATERETÊ - focusing on solutions to minimize misalignments among the parts, to grant high stiffness and to ensure that the thermal performance would not impair beam characteristics. Hence, all parts were carefully simulated, machined, and measured before assembling. This work details mechanical, thermal, diagnostics, and dynamic aspects of the instruments, from the design phase to their installation and initial commissioning at the beamlines.
 
poster icon Poster MOPB04 [3.518 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB04  
About • paper received ※ 25 July 2021       paper accepted ※ 30 August 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB08 Vibration Assessment at the CARNAÚBA Beamline at Sirius/LNLS 37
 
  • C.S.N.C. Bueno, F.A. Borges, G.R.B. Ferreira, R.R. Geraldes, L.M. Kofukuda, M.A.L. Moraes, G.B.Z.L. Moreno, D.V. Rocha e Silva, M.H.S. Silva, H.C.N. Tolentino, L.M. Volpe, V.B. Zilli, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) is the longest beamline at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS), working in the energy range between 2.05 and 15 keV and hosting two stations: the sub-microprobe TARUMÃ, with coherent beam size varying from 550 to 120 nm; and the nanoprobe SAPOTI, with coherent beam size varying from 150 to 30 nm. Due to the long distances from the insertion device to the stations (136 and 143 m) and the extremely small beam sizes, the mechanical stability of all opto-mechanical systems along the facility is of paramount importance. In this work we present a comprehensive set of measurements of both floor stability and modal analyses for the main components, including: two side-bounce mirror systems; the four-crystal monochromator; the Kirkpatrick-Baez (KB) focalizing optics; and the station bench and the sample stage at TARUMÃ. To complement the components analyses, we also present synchronized long-distance floor acceleration measurements that make it possible to evaluate the relative stability through different floor slabs: the accelerator slab, over which the insertion device and first mirror are installed; experimental hall slab, which accommodates the second mirror; and the slabs in satellite building, consisting of three inertial blocks lying over a common roller-compacted concrete foundation, the first with the monochromator and the remaining ones with an station each. In addition to assessing the stability across this beamline, this study benchmarks the in-house design of the recently-installed mirrors, monochromators and end-stations.
 
poster icon Poster MOPB08 [3.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB08  
About • paper received ※ 29 July 2021       paper accepted ※ 16 September 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC11 The HD-DCM-Lite: A High-Dynamic DCM with Extended Scanning Capabilities for Sirius/LNLS Beamlines 203
 
  • A.V. Perna, H.O.C. Duarte, R.R. Geraldes, M.A.L. Moraes, M. Saveri Silva, M.S. Souza, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
After successfully designing, installing, and commissioning two units of the High-Dynamic Double-Crystal Monochromator (HD-DCM) at the Brazilian Synchrotron Light Laboratory (LNLS) - Sirius, two more units are now required. Since they demand only a smaller energy range (5 to 35 keV), the total gap stroke of the new instruments can be significantly reduced, creating an opportunity to adapt the existing design towards the so-called HD-DCM-Lite. Removing the large gap adjustment mechanism allows a reduction of the main inertia by a factor of 5, enabling the HD-DCM-Lite to deliver energy flyscans of hundreds of eV reaching 20 cycles per second while keeping fixed exit and the pitch stability in the range of 10 nrad RMS (1 Hz - 2.5 kHz). Hence, an unparallel bridge between slow step-scan DCMs and fast channel-cut monochromators is created. This work presents the in-house development of the HD-DCM-Lite, focusing on its mechanical design, discussions on the ultimate scanning constraints (rotary stage torque, voice-coil forces, interferometers and encoders readout speed limits and subdivisional errors), and thermal management.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster TUPC11 [3.155 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC11  
About • paper received ※ 28 July 2021       paper accepted ※ 16 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)