Author: Galante, D.
Paper Title Page
WEPB13 Design and Commissioning of the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS 292
  • R.R. Geraldes, C.S.N.C. Bueno, L.G. Capovilla, D. Galante, L.C. Guedes, L.M. Kofukuda, G.N. Kontogiorgos, F.R. Lena, S.A.L. Luiz, G.B.Z.L. Moreno, I.T. Neckel, C.A. Perez, A.C. Piccino Neto, A.C. Pinto, C. Sato, A.P.S. Sotero, V.C. Teixeira, H.C.N. Tolentino, W.H. Wilendorf, J.L. da Silva
    LNLS, Campinas, Brazil
  Funding: Ministry of Science, Technology and Innovation (MCTI)
TARUMÃ is the sub-microprobe station of the CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) beamline at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). It has been designed to allow for simultaneous multi-analytical X-ray techniques, including diffraction, spectroscopy, fluorescence and luminescence and imaging, both in 2D and 3D. Covering the energy range from 2.05 to 15 keV, the fully-coherent monochromatic beam size varies from 550 to 120 nm after the achromatic KB (Kirkpatrick-Baez) focusing optics, granting a flux of up to 1e11ph/s/100mA at the probe for high-throughput experiments with flyscans. In addition to the multiple techniques available at TARUMÃ, the large working distance of 440 mm after the ultra-high vacuum (UHV) KB system allows for another key aspect of this station, namely, a broad range of decoupled and independent sample environments. Indeed, exchangeable modular setups outside vacuum allow for in situ, in operando, cryogenic and/or in vivo experiments, covering research areas in biology, chemistry, physics, geophysics, agriculture, environment and energy, to name a few. An extensive systemic approach, heavily based on precision engineering concepts and predictive design, has been adopted for first-time-right development, effectively achieving altogether: the alignment and stability requirements of the large KB mirrors with respect to the beam and to the sample*; and the nanometer-level positioning, flyscan, tomographic and setup modularity requirements of the samples. This work presents the overall station architecture, the key aspects of its main components, and the first commissioning results.
* G.B.Z.L. Moreno et al. "Exactly constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at the CARNAÚBA Beamline", presented at MEDSI’20, paper TUOB01, this conference.
poster icon Poster WEPB13 [2.936 MB]  
DOI • reference for this paper ※  
About • paper received ※ 25 July 2021       paper accepted ※ 28 September 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)