Author: Khan, A.A.
Paper Title Page
MOPC05 Beamline Alignment and Characterization with an Autocollimator 62
 
  • M.V. Fisher, A.A. Khan, J.J. Knopp
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
An electronic autocollimator is a valuable tool that can assist in the alignment of optical beamline components such as mirrors and monochromators. It is also a powerful tool for in situ diagnoses of the mechanical behavior of such components. This can include the repeatability of crystals, gratings, and mirrors as they are rotated; the parasitic errors of these same optical elements as they are rotated and/or translated; and the repeatability and parasitic errors as bendable mirrors are actuated. The autocollimator can even be used to establish a secondary reference if such components require servicing. This paper will provide examples of such alignments, diagnoses, and references that have been made with an autocollimator on existing and recently commissioned beam-lines at the Advanced Photon Source (APS). In addition, this paper will discuss how this experience influenced the specifications and subsequent designs of the new primary high-heat-load mirror systems (PHHLMS) that are currently under fabrication for six of the APS Up-grade (APS-U) feature beamlines. Each mirror was specified to provide in situ line-of-sight access for an autocollimator to either the center of the mirror’s optical surface or to a smaller polished surface centered on the backside of each mirror substrate. This line of sight will be used for initial alignment of the mirror and will be available for in situ diagnoses if required in the future.
 
poster icon Poster MOPC05 [8.944 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC05  
About • paper received ※ 06 August 2021       paper accepted ※ 13 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC02 Bringing the Ground Up (When Is Two Less Than One?) 182
 
  • A.A. Khan, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade project has employed the use of high heat load dual mirror systems in the new feature beamlines being built. Due to the shallow operating angles of the mirrors at a particular beamline, XPCS, the two mirrors needed to be approximately 2.5 m apart to create a distinct offset. Two separate mirror tanks are used for this system. However, it is unclear if the vibrational performance of these tanks would be better if they were both mounted on one large plinth or each mounted on a small plinth. Using accelerometers at the installation location, the floor vibrations were measured. The resulting frequency response function was then imported into a Finite Element Analysis software to generate a harmonic response analysis. The two different plinth schemes were modeled and the floor vibration was introduced as an excitation to the analysis. The relative pitch angle (THETA Y) between the mirrors was evaluated as well as the relative gap between the mirrors (XMAG). Results showed that a single plinth reduces the relative XMAG (RMS) compared to two plinths by approximately 25%. However, the relative THETA Y (RMS), which is arguably more critical, is significantly lower by approximately 99.7% in two plinths when compared to a single plinth. Therefore, it is more effective to use two separate plinths over a longer distance as opposed to a single longer granite plinth.
 
poster icon Poster TUPC02 [0.503 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC02  
About • paper received ※ 23 July 2021       paper accepted ※ 15 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC10 Modular Nanopositioning Flexure Stages Development for APS Upgrade K-B Mirror Nanofocusing Optics 199
 
  • D. Shu, J.W.J. Anton, L. Assoufid, S.J. Bean, D. Capatina, V. De Andrade, E.M. Dufresne, T. Graber, R. Harder, D. Haskel, K. Jasionowski, S.P. Kearney, A.A. Khan, B. Lai, W. Liu, J. Maser, S.T. Mashrafi, G.K. Mistri, S. Narayanan, C.A. Preissner, M. Ramanathan, L. Rebuffi, R. Reininger, O.A. Schmidt, X. Shi, J.Z. Tischler, K.J. Wakefield, D. Walko, J. Wang, X. Zhang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Kirkpatrick and Baez (K-B) mirror-based nanofocusing optics* will be applied to many beamlines endstation instruments for the APS-Upgrade (APS-U) project. Precision nanopositioning stages with nanometer-scale linear positioning resolution and nanoradian-scale angular stability are needed as alignment apparatus for the K-B mirror hard X-ray nanofocusing optics. For instance, at the APS-U 19-ID In Situ Nanoprobe beamline endstation**, to maintain stability of a 20-nm focal spot on the sample, nanofocusing K-B mirror system with 5-nrad angular stability is required. Similar angular resolution and stability are also required for APS-U 9-ID CSSI***, APS-U 34-ID ATOMIC**** and other beamline endstation instruments. Modular nanopositioning flexure stages have been developed for the K-B mirror nanofocusing optics, which includes: linear vertical and horizontal flexure stages, tip-tilting flexure stages, and flexure mirror benders for bendable nanofocusing K-B mirrors, to overcome the performance limitations of precision ball-bearing-based or roller-bearing-based stage systems. The mechanical design and preliminary test results are described in this paper.
* Kirkpartrick and Baez, JOSA. 1948; 38(9): 766-773.
** S. Kearney et al., this conference.
*** J. Anton et al., this conference.
**** C. Preissner et al., this conference.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC10  
About • paper received ※ 02 August 2021       paper accepted ※ 21 October 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)