Author: Preissner, C.A.
Paper Title Page
MOPC16 Validation of APS-U Magnet Support Design Analysis and Prediction 89
 
  • Z. Liu, W.G. Jansma, J. Nudell, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APS-U) accelerator magnets have stringent stability requirement*. The project schedule and budget did not allow for full prototyping of the final design. Therefore, the engineers relied on accurate simulation to ensure that the design would meet the specifications. Recently, assembly and free-boundary vibration tests have been done on the first article of the upstream quadrupole Doublet, Longitudinal gradient dipole and Multipole module (DLM-A). The top surface flatness of the girder and the magnet alignment measurement results demonstrate the static positioning requirement of magnet-to-magnet is met. The free-boundary condition modal test results were used to validate the FEA analysis used in the DLM-A design. This validation then confirms the predicted performance of the magnet support system design. Mode shapes and corresponding frequencies from the FEA modal analysis agree with the experimental modal analysis within an acceptable tolerance. The validation approves not only the procedure for accurate modeling of magnet support system that APS-U has developed, but also provides confidence in predicting the accelerator performance.
*Advanced Photon Source. (2019). APS Upgrade Project Final Design Report (APSU-2.01-RPT-003). Retrieved from https://www.aps.anl.gov/APS-Upgrade/Documents
 
poster icon Poster MOPC16 [0.807 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC16  
About • paper received ※ 23 July 2021       paper accepted ※ 13 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC02 Bringing the Ground Up (When Is Two Less Than One?) 182
 
  • A.A. Khan, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade project has employed the use of high heat load dual mirror systems in the new feature beamlines being built. Due to the shallow operating angles of the mirrors at a particular beamline, XPCS, the two mirrors needed to be approximately 2.5 m apart to create a distinct offset. Two separate mirror tanks are used for this system. However, it is unclear if the vibrational performance of these tanks would be better if they were both mounted on one large plinth or each mounted on a small plinth. Using accelerometers at the installation location, the floor vibrations were measured. The resulting frequency response function was then imported into a Finite Element Analysis software to generate a harmonic response analysis. The two different plinth schemes were modeled and the floor vibration was introduced as an excitation to the analysis. The relative pitch angle (THETA Y) between the mirrors was evaluated as well as the relative gap between the mirrors (XMAG). Results showed that a single plinth reduces the relative XMAG (RMS) compared to two plinths by approximately 25%. However, the relative THETA Y (RMS), which is arguably more critical, is significantly lower by approximately 99.7% in two plinths when compared to a single plinth. Therefore, it is more effective to use two separate plinths over a longer distance as opposed to a single longer granite plinth.
 
poster icon Poster TUPC02 [0.503 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC02  
About • paper received ※ 23 July 2021       paper accepted ※ 15 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC10 Modular Nanopositioning Flexure Stages Development for APS Upgrade K-B Mirror Nanofocusing Optics 199
 
  • D. Shu, J.W.J. Anton, L. Assoufid, S.J. Bean, D. Capatina, V. De Andrade, E.M. Dufresne, T. Graber, R. Harder, D. Haskel, K. Jasionowski, S.P. Kearney, A.A. Khan, B. Lai, W. Liu, J. Maser, S.T. Mashrafi, G.K. Mistri, S. Narayanan, C.A. Preissner, M. Ramanathan, L. Rebuffi, R. Reininger, O.A. Schmidt, X. Shi, J.Z. Tischler, K.J. Wakefield, D. Walko, J. Wang, X. Zhang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Kirkpatrick and Baez (K-B) mirror-based nanofocusing optics* will be applied to many beamlines endstation instruments for the APS-Upgrade (APS-U) project. Precision nanopositioning stages with nanometer-scale linear positioning resolution and nanoradian-scale angular stability are needed as alignment apparatus for the K-B mirror hard X-ray nanofocusing optics. For instance, at the APS-U 19-ID In Situ Nanoprobe beamline endstation**, to maintain stability of a 20-nm focal spot on the sample, nanofocusing K-B mirror system with 5-nrad angular stability is required. Similar angular resolution and stability are also required for APS-U 9-ID CSSI***, APS-U 34-ID ATOMIC**** and other beamline endstation instruments. Modular nanopositioning flexure stages have been developed for the K-B mirror nanofocusing optics, which includes: linear vertical and horizontal flexure stages, tip-tilting flexure stages, and flexure mirror benders for bendable nanofocusing K-B mirrors, to overcome the performance limitations of precision ball-bearing-based or roller-bearing-based stage systems. The mechanical design and preliminary test results are described in this paper.
* Kirkpartrick and Baez, JOSA. 1948; 38(9): 766-773.
** S. Kearney et al., this conference.
*** J. Anton et al., this conference.
**** C. Preissner et al., this conference.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC10  
About • paper received ※ 02 August 2021       paper accepted ※ 21 October 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC15 A New Ultra-Stable Variable Projection Microscope for the APS Upgrade of 32-ID 211
 
  • S.J. Bean, V. De Andrade, A. Deriy, K. Fezzaa, T. Graber, J. Matus, C.A. Preissner, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
A new nano-computed tomography projection microscope (n-CT) is being designed as part the Advanced Photon Source Upgrade (APS-U) beamline enhancement at sector 32-ID. The n-CT will take advantage of the APS-U source and provide new capabilities to the imaging program at 32-ID. A Kirkpatrick and Baez (KB) mirror-based nanofocusing optics [1,2] will be implemented in this design. To meet the n-CT imaging goals, it is the desire to have sub 10 nanometer vibrational and thermal drift stability over 10-minute measurement durations between the optic and the sample. In addition to the stability requirements, it is desired to have a variable length sample projection axis of up to 450 mm. Such stability and motion requirements are challenging to accomplish simultaneously due to performance limitations of traditional motion mechanics and present a significant engineering challenge. To overcome these limitations, the proposed n-CT design incorporates granite air bearing concepts initially used in the Velociprobe [3]. These types of granite stages have been incorporated into many designs at APS [4] and at other synchrotron facilities [5]. Utilizing the granite air bearing concept, in tandem with other design aspects in the instrument, the requirements become reachable. A novel multi-degree of freedom wedge configuration is also incorporated to overcome space limitations. The design of this instrument is described in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC15  
About • paper received ※ 12 August 2021       paper accepted ※ 19 October 2021       issue date ※ 02 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB07 Magnet Module Assembly for the APS Upgrade 283
 
  • K.J. Volin, R. Bechtold, A.K. Jain, W.G. Jansma, Z. Liu, J. Nudell, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357.
With APSU well into the procurement phase of the project, the APSU assembly team has completed a "DLMA Practice Assembly", comprising of the support system, and all magnets required to complete a module. The purpose of this test was to verify assembly and documentation procedures, ensure proper fit between mating components, and verify that alignment specifications can be met. The results of this exercise are presented. Though this test was completed on the Argonne site, work continues on building 981, the APSU offsite warehouse, where our first production plinths and girders have been shipped, and where production modules will be assembled. This space has been outfitted by Argonne contractors and APSU Assembly technicians with 1) 5 parallel DLM/FODO module assembly stations, each complete with a 3 tn. overhead crane, retractable cleanroom, staging tables, and tools, and 2) 2 QMQ module assembly stations each complete with a 5 tn. gantry crane, assembly support stands, staging tables, and tools. An overview of this production assembly space is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB07  
About • paper received ※ 07 September 2021       paper accepted ※ 29 October 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOA01 A Family of High-Stability Granite Stages for Synchrotron Applications 341
 
  • C.A. Preissner, S.J. Bean, M. Erdmann
    ANL, Lemont, Illinois, USA
  • M. Bergeret, J.R. Nasiatka
    LBNL, Berkeley, California, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Engineers at the APS have developed a granite, air-bearing stage concept that provides many millimeters of motion range and nanometer-level vibrational stability. This technique was first conceptualized and used on the Velociprobe x-ray microscope. The success of that design spurred adaption of the approach to over 90 devices, including many new instruments at the APS and high performing instruments at other synchrotrons. This paper details the design concept, some performance measurements, and new developments allowing for a six-degree-of-freedom device.
 
slides icon Slides THOA01 [12.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-THOA01  
About • paper received ※ 13 August 2021       paper accepted ※ 13 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOA02 A New Traveling Interferometric Scheme for the APS Upgrade of the 2-ID Bionanoprobe 345
 
  • S.J. Bean, S. Chen, T. Graber, C. Jacobsen, B. Lai, E.R. Maxey, T. Mooney, C.A. Preissner, X. Shi, D. Shu, J. Tan, W. Wojcik
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
The Advanced Photon Source (APS) at Argonne National Laboratory (ANL) is being upgraded to a multi-bend achromat (MBA) lattice storage ring which will increase brightness and coherent flux by several orders of magnitude. As part of this upgrade a total of 15 beamlines were selected to be enhanced to take advantage of the new source ’ these are designated as ’Enhanced Beamlines’. Among these is the enhancement to 2-ID, which includes an upgrade and move of the existing Bionanoprobe (BNP) from 9-ID [1]. This instrument will become the second generation Bionanoprobe II (BNP-II) with intent of studying cryogenic samples with sub-10 nm resolution. This upgrade requires a high performing metrology configuration and design to achieve the desired spatial resolution while adapting to the various constraints of the instrument. The cryogenic sample environment and detection constraints offer significant challenges for implementing a metrology scheme. In this paper we report on the new traveling interferometer configuration proposed for BNP-II.
 
slides icon Slides THOA02 [1.580 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-THOA02  
About • paper received ※ 29 July 2021       paper accepted ※ 13 October 2021       issue date ※ 29 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)