Author: Reyes-Herrera, J.
Paper Title Page
WEPA10 Design and Ray-Tracing of the BEATS Beamline of SESAME 246
  • G. Iori, M.M. Al Shehab, M.A. Al-Najdawi, A. Lausi
    SESAME, Allan, Jordan
  • M. Altissimo, I. Cudin
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Kaprolat, J. Reyes-Herrera, P. Van Vaerenbergh
    ESRF, Grenoble, France
  • T. Kolodziej
    NSRC SOLARIS, Kraków, Poland
  Funding: EU H2020 framework programme for research and innovation. Grant agreement n°822535.
The BEAmline for Tomography at SESAME (BEATS) will operate an X-rayμtomography station providing service to scientists from archaeology, cultural heritage, medicine, biology, material science and engineering, geology and environmental sciences*. BEATS will have a length of 45 m with a 3-pole-wiggler source (3 T peak magnetic field at 11 mm gap). Filtered white and monochromatic beam (8 keV to 50 keV, dE/E: 2% to 3% using a double-multilayer-monochromator) modalities will be available. In this work we present the beamline optical design, verified with simulation tools included in OASYS**. The calculated flux through 1 mm2 at the sample position will be as high as 8.5×109 Ph/s/mm2 in 0.1% of the source bandwidth, for a maximum usable beam size of 70×15 mm2. Beam transverse coherence will be limited to below 1 µm by the horizontal size of the X-ray source (~2 mm FWHM). For phase contrast applications requiring enhanced coherence, front end slits can be closed to 0.5 mm horizontally, with a reduction of the available beam size and photon flux. The BEATS beamline will fulfill the needs of the tomography community of SESAME.
* H2020 project BEATS, Technical Design Report (July 2020).
** L. Rebuffi and M. Sanchez del Rio, Proc. SPIE 10388: 130080S (2017).
poster icon Poster WEPA10 [2.480 MB]  
DOI • reference for this paper ※  
About • paper received ※ 14 July 2021       paper accepted ※ 27 September 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPB17 A Fast Simulation Tool to Calculate Spectral Power Density Emitted by Wigglers and Short Insertion Devices 303
  • J. Reyes-Herrera, M. Sanchez del Rio
    ESRF, Grenoble, France
  The analysis of thermal stress of beamline components requires a comprehensive determination of the absorbed power profile. Consequently, accurate calculations of beam power density and its dependency on the photon energy are required. There exist precise tools to perform these calculations for undulator sources, like several methods available in the OASYS toolbox* considering, for example, the contribution of the different harmonics of the undulator radiation or using ray-tracing algorithms**. This is not the case for wiggler sources, in particular for short insertion devices that are used as source for the bending magnet beamlines in some upgraded storage rings like the ESRF-EBS. Wiggler radiation is incoherent and although it is possible the use of undulator methods for calculating it, this is very inefficient. In this work, we describe a tool that performs fast calculations of spectral power density from a wiggler source. The emission is calculated starting from a tabulated magnetic field and computes the power spatial and spectral density. It uses concepts inspired from Tanaka’s work***. It is implemented in a user-friendly widget in OASYS and can be connected to widgets to calculate absorbed and transmitted power density along the beamline components. The accuracy of the method is verified by calculating three examples and comparing the results with ray-tracing. The three insertion devices simulated are: the EBS-ESRF-3PW, the ESRF W150 (a high power wiggler) and the 3PW for the BEATS project at the SESAME synchrotron source.
*L. Rebuffi, M. Sanchez del Rio, Proc. SPIE 10388: 130080S (2017).
**L. Rebuffi et al., J Synchrotron Rad, 27, 1108-1120 (2020).
***T. Tanaka, H. Kitamura, AIP Conference Proceedings 705, 41 (2004).
DOI • reference for this paper ※  
About • paper received ※ 28 July 2021       paper accepted ※ 28 September 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)