Author: Ribó, L.R.M.
Paper Title Page
WEPA07 The Fizeau System Instrument at ALBA Optics Laboratory 235
  • L.R.M. Ribó, D. Alloza, C. Colldelram, J. Nicolás, I. Šics
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  The ALBA optics laboratory has recently acquired a new Zygo Verifire HD Fizeau interferometer. The instrument has been integrated into a positioning stage to allow stitching of long x-ray optical elements. The mechanical set up, with four axes, allows for automatic positioning and alignment of the interferometer aperture to the surface under test. The longitudinal movement allows for scan of X-ray mirrors up to 1500 m long. The positioning platform includes two angles, roll and yaw, and two translations, vertical and longitudinal translations. The longitudinal translation is a custom designed linear stage. The yaw rotation is based on a sine arm mechanism. The vertical and roll motions are combined in a single stage, closely integrated around the main linear stage. The system reaches repeatabilities better than 1 µm or 1 µrad for all axes. The system is mounted on top of a vibration isolated bench in the clean room of the laboratory. The control software of the instrument allow direct control of every individual axis, and allows selecting the center of rotation for both roll and yaw. The system includes inclinometers and autocollimators to control the relative orientation between the interferometer and the mirror under test. The system is integrated to the software of the interferometer, and includes features for automatic alignment of the interferometer to the mirror, or for automatic stitching acquisition, with selectable parameters. The system allows for full three-dimensional characterization of the optical surface of mirrors and gratings, and provides height map reconstructions with accuracy in the order of 1 nm, for flat or curved surfaces with lengths up to 1500 mm.  
poster icon Poster WEPA07 [2.785 MB]  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 21 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA14 All Applications of the ALBA Skin Concept 259
  • A. Crisol, A. Carballedo, C. Colldelram, N González, J. Juanhuix, J. Nicolás, L.R.M. Ribó, C. Ruget
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L.W.S. Adamson
    ASCo, Clayton, Victoria, Australia
  • J.B. González Fernández
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E.R. Jane
    FMB Oxford, Oxford, United Kingdom
  During the ALBA design phase, the protein macromolecular protein crystallography beamline, XALOC, required several in-house developments. The major part of these designs was at the end station where the necessity of customization is always much higher. The most relevant of these instruments was the beam conditioning elements table [1]. This accurate stage, which supports the diffractometer as well, includes the four movements required to align the components to the nominal beam as well as position the diffractometer. This design compacts, especially the vertical and pitch movements, both in a single stage, with a couple of stages for all four excursions. The solution maximise the stiffness and preserves at the same time the resolution close to 0.1µm while being able to withstand a half tone of payload. Thanks this compactness and performances this design concept, the vertical and pitch combined stage, was not only applied at XALOC for its diffractometer and detector table, but it has been widely adapted at several ALBA beamlines: at NCD-SWEET [2] as a detector table, a beam conditioning elements table [3] and sample table, at MSPD beamline as the KB table, at NOTOS beamline as metrology table, and also at the new ESA MINERVA beamline [4] for their sample mirror modules positioning. Beamlines have not been the only beneficiaries of this design, also different kind of instrumentation like an hall probe measuring bench [5], and even a stitching platform for the ALBA optics laboratory [6]. Moreover, the concept has outreach ALBA and has been adopted also at other facilities worldwide, synchrotrons and also scientific instrumentation suppliers around Europe. This poster presents most of the applications of the skin concept and their variations and main measured performances.  
poster icon Poster WEPA14 [2.221 MB]  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 22 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)