Keyword: detector
Paper Title Other Keywords Page
MOIO02 BM18, the New ESRF-EBS Beamline for Hierarchical Phase-Contrast Tomography SRF, experiment, vacuum, GUI 1
  • F. Cianciosi, A.-L. Buisson, P. Tafforeau, P. Van Vaerenbergh
    ESRF, Grenoble, France
  BM18 is an ESRF-EBS beamline for hierarchical tomography, it will combine sub-micron precision and the possibility to scan very large samples. The applications will include biomedical imaging, material sciences and cultural heritage. It will allow the complete scanning of a post-mortem human body at 25 µm, with the ability to zoom-in in any location to 0.7 µm. BM18 is exploiting the high-energy-coherence beam of the new EBS storage ring. The X-ray source is a short tripole wiggler that gives a 300mm-wide beam at the sample position placed 172m away from the source. Due to this beam size, nearly all of the instruments are devel-oped in-house. A new building was constructed to ac-commodate the largest synchrotron white-beam Experi-mental Hutch worldwide (42x5-6m). The main optical components are refractive lenses, slits, filters and a chop-per. There is no crystal monochromator present but the combination of the optical elements will provide high quality filtered white beams, as well as an inline mono-chromator system. The energy will span from 25 to 350 keV. The Experimental Hutch is connected by a 120m long UHV pipe with a large window at the end, followed by a last set of slits. The sample stage can position, rotate and monitor with sub-micron precision samples up to 2,5x0.6m (H x Diam.) and 300kg. The resulting machine is 4x3x5m and weighs 50 tons. The girder for detectors carries up to 9 detectors on individual 2-axis stages. It moves on air-pads on a precision marble floor up to 38m behind the sample stage to perform phase contrast imag-ing at a very high energy on large objects. The commissioning is scheduled for the beginning of 2022; the first ’friendly users’ are expected in March 2022 and the full operation will start in September 2022.  
slides icon Slides MOIO02 [16.566 MB]  
DOI • reference for this paper ※  
About • paper received ※ 17 July 2021       paper accepted ※ 03 November 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPC01 Mechanical Design of a Soft X-Ray Beam Position Monitor for the Coherent Soft X-Ray Scattering Beamline undulator, photon, controls, synchrotron 56
  • C. Eng, S. Hulbert, C. Mazzoli, B. Podobedov
    BNL, Upton, New York, USA
  • D. Donetski, J. Liu
    Stony Brook University, Stony Brook, New York, USA
  Funding: U.S. Department of Energy (DOE) Office of Science Contract No. DE-SC0012704.
Achieving photon beam stability, a critical property of modern synchrotron beamlines, requires a means of high resolution, non-invasive photon beam position measurement. While such measurement techniques exist for hard x-ray beamlines, they have yet to be achieved for soft x-ray beamlines. A new soft X-ray beam position monitor (SXBPM) design based on GaAs detector arrays is being developed and will be installed in the first optical enclosure of the Coherent Soft X-ray Scattering (CSX) beamline at the National Synchrotron Light Source II (NSLS-II). The SXBPM assembly contains four water-cooled blade assemblies, each of which will have a GaAs detector assembly mounted within it, that can be inserted into the outer edges of the CSX undulator beam with sub-micron accuracy and resolution. The primary challenges in design of the SXBPM include: 1) mechanical stability of the assembly, 2) management of the heat load from the undulator x-ray beam to protect GaAs detector assemblies from unwanted illumination, 3) assembly compactness to fit within the first optical enclosure (FOE) of the CSX beamline, and 4) accessibility for modifications. Balancing the unique design requirements of the SXBPM along with their associated constraints has resulted in the design of a non-invasive beam position monitor which will be installed in the CSX FOE as a prototype for testing and iterative improvement. The ultimate goal is development of a widely useful SXBPM instrument for soft X-ray beamlines at high brightness synchrotron storage ring facilities worldwide. The following work seeks to present an overview of the current design of the SXBPM and an analysis of the challenges encountered and the proposed solutions by which they will be addressed.
poster icon Poster MOPC01 [1.213 MB]  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 16 September 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPA02 Design of Remote Helium Mass Spectrometer Leak Detector vacuum, injection, controls, gun 123
  • H.Y. He, H. Song
    IHEP, Beijing, People’s Republic of China
  • J.M. Liu
    DNSC, Dongguan, People’s Republic of China
  • R.H. Liu, G.Y. Wang
    IHEP CSNS, Guangdong Province, People’s Republic of China
  Leak detection is the key to get a good vacuum system. For the dangerous areas, or facility with complicit structure required to be detected online, it is a hard mask to seek for the suspected leaks one after another. After studying the basic principle of helium mass leak detection, design a remote leak detector based on the PLC, as well as multi monitoring cameras, which can achieve successful injection and sniffer probe leak detection in the range of 270 degree. Compared with the manual operation, this device aims at accurately and reliably detecting leak rate, which can greatly provide technique support of online leak detection. And it can bring the value of reducing the labor intensity and ensuring personal safety.  
poster icon Poster TUPA02 [0.195 MB]  
DOI • reference for this paper ※  
About • paper received ※ 05 July 2021       paper accepted ※ 14 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPA16 Design and Development of the Advanced Diffraction and Scattering Beamlines at the Australian Synchrotron synchrotron, experiment, operation, alignment 150
  • B.J. McMahon, J.E. Auckett, M. Fenwick, R.B. Hogan, J.A. Kimpton, R. Lippi, S. Porsa
    AS - ANSTO, Clayton, Australia
  The ADS beamlines are the fifth and sixth beamlines being built within the Australian Synchrotron/ANSTO BRIGHT program The two beamlines (ADS-1 and ADS-2) will operate independently with the beam generated by a powerful super-conducting multipole wiggler (SCMPW). ADS-1 will have tunable collimating optics that will combine with a fixed exit double crystal Laue monochromator (DCLM) to provide white, pink and monochromatic beam (50-150 keV) to a large end-station located outside the main synchrotron building. ADS-1 will accommodate experiments using a variety of sample stages capable of positioning large and heavy samples (up to 300 kg). The second ADS beamline, ADS-2, will take a deflected beam from the main beam using a side-bounce monochromator (SBM) that produces three monochromatic energies from 45 keV - 90 keV. The SCMPW source for the beamline produces a beam of 45 kW at 4.5 T. The major optics of the beamline include a cryogenic SBM and a cryogenic DCLM, a transfocator and multilayer VFM. The high heat load on the front end and upstream monochromator represented key challenges for the beamline design. Innovative approaches to thermal management have been developed. The high radiation environment required additional safety protocols to be implemented for beamline operation. The primary beamline endstation utilises a large gantry robot to independently position up to 4 detectors in an envelope of up to 8x3x0.3 m with a positional repeatability of ± 0.01 mm. The large motion envelope gives users access to large Q-range and allows flexibility for users to utilise large bespoke sample environments. The ADS beamlines project encompasses design, procurement, build/installation and commissioning phases. The beamline will commence user operations in July 2023.  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 15 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPB08 High-Precision Synchrotron Kappa Diffractometer synchrotron, alignment, synchrotron-radiation, electron 163
  • G. Olea, N. Huber, J. Zeeb
    HUBER Diffraktiontechnik GmbH&Co.KG, Rimsting, Germany
  A new research product aiming to work in a 3th generation synchrotron facility (PAL/PLS II) has been developed. Based on increased energy X-ray synchrotron radiation tool and well-known Kappa geometry device principle, the product is expected that will investigate atomic and molecular structures of materials at nanoscale level using several X-ray diffraction techniques. The Kappa diffractometer (K-Dm) machine is maintaining the common structural principle of its family, but working with an extreme precision and load, which is far of the competition. The main body is consisting from customized Kappa goniometer (KGm) device with vertical axis of rotation for high-precision sample (cryostat) manipulation, versatile detector arm (Da) for manipulating in horizontal plan different detectors (optics, slits, etc.) after X-ray beam is scattered and stable alignment base (Ab) for roughly adjusting the product around the X-ray beam. In addition, a XYZ cryo-carrier inside of the KGm is included for fine (submicron) sample adjustments. The kinematic, design and precision concepts applied, together with the obtained test results are all in detail presented.*
* HUBER Diffraction and Positioning GmbH&Co.KG,
DOI • reference for this paper ※  
About • paper received ※ 16 July 2021       paper accepted ※ 16 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPC09 Progress of Nano-Positioning Design for the Coherent Surface Scattering Imaging Instrument for the Advanced Photon Source Upgrade Project photon, alignment, laser, scattering 196
  • J.W.J. Anton, M. Chu, Z. Jiang, S. Narayanan, D. Shu, J. Strzalka, J. Wang
    ANL, Lemont, Illinois, USA
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
As part of the Advanced Photon Source Upgrade (APS-U) project, the Coherent Surface Scattering Imaging (CSSI) [1] instrument is currently being developed. One of the most important components of the CSSI instrument at the 9-ID beamline of the APS-U, the Kirkpatrick-Baez (K-B) mirror system, will focus hard X-rays to a diffrac-tion-limited size of 500 nanometers at a working distance of 550 mm. High angular stability (19 nrad for the hori-zontal mirror and 14 nrad for the vertical mirror) is speci-fied no just for the focused beamsize but, more important-ly, to ensure the beam stability at the detector position that is up to 24 m from the K-B mirrors. A large sample-to-detector distance (up to 23 m), one of the beamline’s unique features for achieving a sufficient coherent-imaging spatial oversampling, requires sample angular stability of 50 nrad. In CSSI scattering geometry, the vertically placed sample reflects X-rays in the horizontal direction at an extremely shallow angle. The design in-cludes two high-precision rotary stages for sample pitch (vertical axis) and yaw (horizontal axis). The current design of instrument’s nano-positioning stages [2] and metrology required to satisfy the stability and positioning requirements are discussed in this paper.
*T. Sun et al., Nat. Photonics 6, 586 (2012).
**D. Shu et al., this conference.
poster icon Poster TUPC09 [1.252 MB]  
DOI • reference for this paper ※  
About • paper received ※ 13 August 2021       paper accepted ※ 16 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEOB01 Engineering Challenges in BioSAXS for Australian Synchrotron vacuum, radiation, synchrotron, photon 224
  • S. Venkatesan, L. Barnsley, A.J. Clulow, A.P. Mazonowicz, C.J. Roy
    AS - ANSTO, Clayton, Australia
  • G. Conesa-Zamora, R. Grubb, H. Hamedi, B. Jensen, C.S. Kamma-Lorger, V.I. Samardzic-Boban
    ANSTO, Menai, New South Wales, Australia
  The Biological Small Angle X-Ray Scattering (BioSAXS) beamline is the third beamline designed, developed and soon to be installed as part of BRIGHT Program at the Australian Synchrotron. The BioSAXS beamline will allow highly radiation sensitive samples to be studied at high flux. The beamline will offer increased efficiency, and data quality, for all liquid phase scattering experiments, allowing measurement of new and novel samples, and experiments, that otherwise would not be possible. The BioSAXS beamline will accommodate a wide range of experiments by offering a q-range of ~ 0.001 - 4 Å-1 and an optical design optimized for high flux (~5x1014 ph/s) x-rays. At this flux rate, BioSAXS will offer users one of the highest flux beamlines in the world. To achieve this, the beamline will use a superconducting undulator insertion device, double multilayer monochromator, and vertical and horizontal bending mirrors, providing flexibility in optical configurations. The beamline will primarily collect data in a fully unfocussed mode. BioSAXS will also be able to achieve a fully focused and a vertically focussed beam. This subsequent variation in the beam position at sample is accommodated through fully automated motion in 5 axes at the in-vacuum detector stage and 4 axes in the sample table. The design of these components allows smooth transition in camera lengths and improved signal to noise ratio. This paper presents the various engineering challenges in this high flux design, including thermal management of critical components, design developments to accommodate the various operational modes and various stages of the Photon Delivery System and Experimental Station components. The paper aims to present details of design, FEA results and approaches taken to solve problems.  
slides icon Slides WEOB01 [1.934 MB]  
DOI • reference for this paper ※  
About • paper received ※ 13 August 2021       paper accepted ※ 29 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA10 Design and Ray-Tracing of the BEATS Beamline of SESAME photon, simulation, SRF, dipole 246
  • G. Iori, M.M. Al Shehab, M.A. Al-Najdawi, A. Lausi
    SESAME, Allan, Jordan
  • M. Altissimo, I. Cudin
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Kaprolat, J. Reyes-Herrera, P. Van Vaerenbergh
    ESRF, Grenoble, France
  • T. Kolodziej
    NSRC SOLARIS, Kraków, Poland
  Funding: EU H2020 framework programme for research and innovation. Grant agreement n°822535.
The BEAmline for Tomography at SESAME (BEATS) will operate an X-rayμtomography station providing service to scientists from archaeology, cultural heritage, medicine, biology, material science and engineering, geology and environmental sciences*. BEATS will have a length of 45 m with a 3-pole-wiggler source (3 T peak magnetic field at 11 mm gap). Filtered white and monochromatic beam (8 keV to 50 keV, dE/E: 2% to 3% using a double-multilayer-monochromator) modalities will be available. In this work we present the beamline optical design, verified with simulation tools included in OASYS**. The calculated flux through 1 mm2 at the sample position will be as high as 8.5×109 Ph/s/mm2 in 0.1% of the source bandwidth, for a maximum usable beam size of 70×15 mm2. Beam transverse coherence will be limited to below 1 µm by the horizontal size of the X-ray source (~2 mm FWHM). For phase contrast applications requiring enhanced coherence, front end slits can be closed to 0.5 mm horizontally, with a reduction of the available beam size and photon flux. The BEATS beamline will fulfill the needs of the tomography community of SESAME.
* H2020 project BEATS, Technical Design Report (July 2020).
** L. Rebuffi and M. Sanchez del Rio, Proc. SPIE 10388: 130080S (2017).
poster icon Poster WEPA10 [2.480 MB]  
DOI • reference for this paper ※  
About • paper received ※ 14 July 2021       paper accepted ※ 27 September 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA12 X-Ray Facility for the Characterization of the ATHENA Mirror Modules at the ALBA Synchrotron vacuum, synchrotron, optics, controls 252
  • A. Carballedo, J.J. Casas, C. Colldelram, G. Cuní, D. Heinis, J. Marcos, O. Matilla, J. Nicolás, A. Sánchez, N. Valls Vidal
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • N. Barrière, M.J. Collon, G. Vacanti
    Cosine Measurement Systems, Warmond, The Netherlands
  • M. Bavdaz, I. Ferreira
    ESA-ESTEC, Noordwijk, The Netherlands
  • E. Handick, M. Krumrey, P. Mueller
    PTB, Berlin, Germany
  MINERVA is a new X-ray facility under construction at the ALBA synchrotron specially designed to support the development of the ATHENA (Advanced Telescope for High Energy Astrophysics) mission. The beamline design is originally based on the monochromatic pencil beam XPBF 2.0 from the Physikalisch-Technische Bundesanstalt (PTB), at BESSY II already in use at this effect. MINERVA will host the necessary metrology equipment to integrate the stacks produced by the cosine company in a mirror module (MM) and characterize their optical performances. From the opto-mechanical point of view, the beamline is made up of three main subsystems. First of all, a water-cooled multilayer toroidal mirror based on a high precision mechanical goniometer, then a sample manipulator constituted by a combination of linear stages and in-vacuum hexapod and finally an X-ray detector which trajectory follows a cylinder of about 12 m radius away from the MM. MINERVA is funded by the European Space Agency (ESA) and the Spanish Ministry of Science and Innovation. MINERVA is today under construction and will be completed to operate in 2022.  
poster icon Poster WEPA12 [1.175 MB]  
DOI • reference for this paper ※  
About • paper received ※ 21 July 2021       paper accepted ※ 19 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA14 All Applications of the ALBA Skin Concept synchrotron, optics, GUI, insertion-device 259
  • A. Crisol, A. Carballedo, C. Colldelram, N González, J. Juanhuix, J. Nicolás, L.R.M. Ribó, C. Ruget
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L.W.S. Adamson
    ASCo, Clayton, Victoria, Australia
  • J.B. González Fernández
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E.R. Jane
    FMB Oxford, Oxford, United Kingdom
  During the ALBA design phase, the protein macromolecular protein crystallography beamline, XALOC, required several in-house developments. The major part of these designs was at the end station where the necessity of customization is always much higher. The most relevant of these instruments was the beam conditioning elements table [1]. This accurate stage, which supports the diffractometer as well, includes the four movements required to align the components to the nominal beam as well as position the diffractometer. This design compacts, especially the vertical and pitch movements, both in a single stage, with a couple of stages for all four excursions. The solution maximise the stiffness and preserves at the same time the resolution close to 0.1µm while being able to withstand a half tone of payload. Thanks this compactness and performances this design concept, the vertical and pitch combined stage, was not only applied at XALOC for its diffractometer and detector table, but it has been widely adapted at several ALBA beamlines: at NCD-SWEET [2] as a detector table, a beam conditioning elements table [3] and sample table, at MSPD beamline as the KB table, at NOTOS beamline as metrology table, and also at the new ESA MINERVA beamline [4] for their sample mirror modules positioning. Beamlines have not been the only beneficiaries of this design, also different kind of instrumentation like an hall probe measuring bench [5], and even a stitching platform for the ALBA optics laboratory [6]. Moreover, the concept has outreach ALBA and has been adopted also at other facilities worldwide, synchrotrons and also scientific instrumentation suppliers around Europe. This poster presents most of the applications of the skin concept and their variations and main measured performances.  
poster icon Poster WEPA14 [2.221 MB]  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 22 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPB12 ForMAX Endstation - a Novel Design Combining Full-Field Tomography with Small- and Wide-Angle X-Ray Scattering vacuum, experiment, operation, scattering 289
  • J.B. González Fernández, S.A. McDonald, K. Nygard, L.K. Roslund
    MAX IV Laboratory, Lund University, Lund, Sweden
  Funding: The construction of the ForMAX beamline is funded by the Knut and Alice Wallenberg Foundation.
ForMAX is a new beamline at the MAX IV Laboratory for multi-scale structural characterization of hierarchical materials from nm to mm length scales with high temporal resolution. This is achieved by combining full-field microtomography with small- and wide-angle X-ray scattering (SWAXS) in a novel manner. The principal components of the endstation consist of two units of beam conditioning elements, a sample table, an evacuated flight tube and a detector gantry. The beam conditioning units include a diamond vacuum window, an attenuator system, a fast shutter, a slit collimation system, two sets of compound refractive lenses, three X-ray beam intensity monitors, a beam viewer and a telescopic vacuum tube. The sample table has been optimized with respect to flexibility and load capacity, while retaining sub-micron resolution of motion and high stability performance. The nine metre long and one metre diameter evacuated flight tube contains a motorised detector trolley, enabling the sample-detector position for small-angle X-ray scattering (SAXS) to be easily adjusted under vacuum conditions. Finally, a two metre high and two metre wide granite gantry permits independent and easy movement of the tomography microscope and wide-angle X-ray (WAXS) detector in and out of the X-ray beam. To facilitate propagation-based phase-contrast imaging and mounting of bulky sample environments, the gantry is mounted on motorized floor rails. All these characteristics will allow to combine multiple complementary techniques sequentially in the same experiment with fast efficient switching between setups. The ForMAX endstation is presently in the design and construction phase, with commissioning expected to commence early 2022.
poster icon Poster WEPB12 [1.955 MB]  
DOI • reference for this paper ※  
About • paper received ※ 16 July 2021       paper accepted ※ 16 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPB13 Design and Commissioning of the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS experiment, synchrotron, vacuum, instrumentation 292
  • R.R. Geraldes, C.S.N.C. Bueno, L.G. Capovilla, D. Galante, L.C. Guedes, L.M. Kofukuda, G.N. Kontogiorgos, F.R. Lena, S.A.L. Luiz, G.B.Z.L. Moreno, I.T. Neckel, C.A. Perez, A.C. Piccino Neto, A.C. Pinto, C. Sato, A.P.S. Sotero, V.C. Teixeira, H.C.N. Tolentino, W.H. Wilendorf, J.L. da Silva
    LNLS, Campinas, Brazil
  Funding: Ministry of Science, Technology and Innovation (MCTI)
TARUMÃ is the sub-microprobe station of the CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) beamline at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). It has been designed to allow for simultaneous multi-analytical X-ray techniques, including diffraction, spectroscopy, fluorescence and luminescence and imaging, both in 2D and 3D. Covering the energy range from 2.05 to 15 keV, the fully-coherent monochromatic beam size varies from 550 to 120 nm after the achromatic KB (Kirkpatrick-Baez) focusing optics, granting a flux of up to 1e11ph/s/100mA at the probe for high-throughput experiments with flyscans. In addition to the multiple techniques available at TARUMÃ, the large working distance of 440 mm after the ultra-high vacuum (UHV) KB system allows for another key aspect of this station, namely, a broad range of decoupled and independent sample environments. Indeed, exchangeable modular setups outside vacuum allow for in situ, in operando, cryogenic and/or in vivo experiments, covering research areas in biology, chemistry, physics, geophysics, agriculture, environment and energy, to name a few. An extensive systemic approach, heavily based on precision engineering concepts and predictive design, has been adopted for first-time-right development, effectively achieving altogether: the alignment and stability requirements of the large KB mirrors with respect to the beam and to the sample*; and the nanometer-level positioning, flyscan, tomographic and setup modularity requirements of the samples. This work presents the overall station architecture, the key aspects of its main components, and the first commissioning results.
* G.B.Z.L. Moreno et al. "Exactly constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at the CARNAÚBA Beamline", presented at MEDSI’20, paper TUOB01, this conference.
poster icon Poster WEPB13 [2.936 MB]  
DOI • reference for this paper ※  
About • paper received ※ 25 July 2021       paper accepted ※ 28 September 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPB15 A Novel Vacuum Chamber Design for the APS Upgrade of the 26-ID Nanoprobe vacuum, laser, instrumentation, synchrotron 296
  • S.J. Bean, P.N. Amann, M. Bartlein, Z. Cai, T. Graber, M. Holt, D. Shu
    ANL, Lemont, Illinois, USA
  Funding: Used resources of the CNM and the APS, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by ANL under Contract No. DE-AC02-06CH11357.
An enhancement design of an existing 26-ID nanoprobe [1] instrument (NPI) at APS is being completed as part of work for the APS-Upgrade (APS-U) project. As part of this enhancement design, a new vacuum chamber geometry configuration has been implemented that balances the desired simultaneous x-ray measurement methods with accessibility and serviceability of the nanoprobe. The main enabling feature on the vacuum chamber is a slanted mid-level vacuum sealing plane. The new chamber design geometrically optimizes the ability to perform simultaneous diffraction, fluorescence and optical or laser pump probe measurements on the sample. A large diffraction door geometry is strategically placed near the sample for ease of access. The newly designed chamber can be readily serviced by removal of the upper chamber section, on which most larger instrument assemblies or beamline attachments are not interfaced. The mechanical design intent and geometry of this chamber concept is described in this paper.
DOI • reference for this paper ※  
About • paper received ※ 12 August 2021       paper accepted ※ 19 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPC03 Electrochemistry and Microfluidic Environments for the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS experiment, controls, interface, synchrotron 310
  • W.H. Wilendorf, R.R. Geraldes, L.M. Kofukuda, I.T. Neckel, H.C.N. Tolentino
    LNLS, Campinas, Brazil
  • P.S. Fernández
    UNICAMP, Campinas, São Paulo, Brazil
  Funding: Ministry of Science, Technology and Innovation (MCTI)
CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) is a state-of-the-art multi-technique beamline at the 4th-generation Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS), with achromatic optics and fully-coherent X-ray beam in the energy range between 2.05 and 15 keV. At the TARUMÃ station, the in-vacuum KB focusing system has been designed with a large working distance of 440 mm, allowing for a broad range of independent sample environments to be developed in open atmosphere to benefit from the spot size between 550 to 120 nm with a flux in the order of 1e11 ph/s/100mA. Hence, together with a number of different detectors that can be simultaneously used, a wide variety of studies of organic and inorganic materials and systems are possible using cutting-edge X-ray-based techniques in theμand nanoscale, including coherent diffractive imaging (CDI), fluorescence (XRF), optical luminescence (XEOL), absorption spectroscopy (XAS), and diffraction (XRD). Even though samples over the centimeter range can be taken at Tarumã, the small beam and relatively low energies point towards optimized and reduced-size sample holders for in situ experiments. This work describes two related setups that have been developed in-house: a small-volume electrochemical cell with static fluid*; and another multifunctional environment that can be used both as a microfluidic device and as an electrochemistry cell that allows for fluid control over samples deposited on a working electrode. The mechanical design of the devices, as well as the architecture for the fluid and electrical supply systems, according to the precision engineering concepts required for nanopositioning performance, are described in details.
*Vicente, Rafael A., et al., "Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis," ACS nano (2021).
poster icon Poster WEPC03 [2.107 MB]  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 19 October 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPC04 A Compact X-Ray Emission (mini-XES) Spectrometer at CLS - Design and Fabrication Methods alignment, shielding, undulator, operation 314
  • T.W. Wysokinski, M. Button, B. Diaz Moreno, A.F.G. Leontowich
    CLS, Saskatoon, Saskatchewan, Canada
  Funding: The research described in this paper was performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation (CFI) and others agencies.
A compact X-ray emission spectrometer (mini-XES) has been designed and fabricated for use at the Brockhouse undulator beamline*. The mini-XES uses cylindrical von Hamos geometry tuned for Fe K-edge and uses a Pilatus 100 K area detector from Dectris**. It is based on a general design implemented at the APS***. The mini-XES design was developed to be as simple to fabricate and as easy to operate as possible. We tried to minimize the number of components, so there are only two main parts that create a chamber. Those two components are joined and aligned by a NW-80 flange. From the beginning, the design was trying to achieve no tools assembly, alignment, and operation. For lower precision alignment we decided to use the centering ring of the NW-80 flange which, together with two posts integrated with the chamber, provides an adequate method for joining the two parts of the enclosure. We use level vials for horizontal adjustment of the holder for the 10 crystals. For high precision alignment of the holder of the crystal, we used the Thorlab KC1/M kinematic mount, which had the adjustment screws accessible from outside of the chamber. The fabrication was done in-house using uPrint SE Plus 3D Printer****. The first tests of the spectrometer were completed in the Brockhouse wiggler beamline and were successful. Future improvements will aim to reduce the background scatter and better position the detector, to improve the fill. Now that the relatively inexpensive design was tested and tried, there is an option to upgrade it to 3D printed tungsten or steel version that would intrinsically provide the required shielding.
* B. Diaz et al., Rev. Sci. Instrum 85, 085104 (2014)
*** B. A. Mattern et al., Rev. Sci. Instrum 83, 023901 (2012)
poster icon Poster WEPC04 [0.809 MB]  
DOI • reference for this paper ※  
About • paper received ※ 09 July 2021       paper accepted ※ 17 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPC12 A New Experimental Station for Liquid Interface X-Ray Scattering At NSLS-II Beamline 12-ID vacuum, experiment, scattering, operation 330
  • D.M. Bacescu, L. Berman, S. Hulbert, B. Ocko, Z. Yin
    BNL, Upton, New York, USA
  Funding: National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated by Brookhaven National Laboratory, under Contract No. DE-SC0012704.
Open Platform and Liquids Scattering (OPLS) is a new experimental station recently built and currently being commissioned at the Soft Matter Interfaces (SMI) beamline 12-ID at NSLS-II. The new instrument expands SMI’s beamline scientific capabilities via the addition of X-ray scattering techniques from liquid surfaces and interfaces. The design of this new instrument, located inside the 12-ID beamline shielding enclosure (hutch B), is based on a single Ge (111) crystal deflector, which bounces the incident x-ray beam downward towards a liquid sample which must be maintained in a horizontal orientation (gravity-driven consideration). The OPLS instrument has a variable deflector-to-sample distance ranging from 0.6 m to 1.5 m. X-ray detectors are mounted on a 2-theta scattering arm located downstream of the sample location. The 2-theta arm is designed to hold up to three X-ray detectors, with fixed 2-theta angular offsets, each dedicated to a different X-ray technique such as X-ray reflectivity, grazing-incidence X-ray scattering, and small- and wide-angle X-ray scattering. Currently, the OPLS experimental station intercepts the SMI beam that otherwise propagates to the experimental endstation located in hutch C and can be retracted to a ’parking’ position laterally out of this beam to allow installation of a removable beam pipe that is needed to support operations in hutch C. The design of OPLS is flexible enough to quickly adapt to a planned future configuration of the SMI beamline in which a OPLS is illuminated separately from the main SMI branch via a second, canted undulator source and a separate photon delivery system. In this future configuration, both branches will be able to operate independently and simultaneously.
poster icon Poster WEPC12 [9.290 MB]  
DOI • reference for this paper ※  
About • paper received ※ 28 July 2021       paper accepted ※ 28 September 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPC13 Sample and Detector Positioning Instruments for the Wide Angle XPCS End Station at 8-ID-E, a Feature Beamline for the APS Upgrade photon, laser, scattering, lattice 333
  • K.J. Wakefield, S.J. Bean, D. Capatina, E.M. Dufresne, M.V. Fisher, M.J. Highland, S. Narayanan, A. Sandy, R. Ziegler
    ANL, Lemont, Illinois, USA
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The X-ray Photon Correlation Spectroscopy (XPCS) beamline at the Advanced Photon Source (APS) has been selected as one of the nine feature beamlines being de-signed to take advantage of the increase in coherent flux provided by the APS Upgrade. The 8-ID-E enclosure at the beamline will have a dedicated instrument for per-forming Wide Angle XPCS (WA-XPCS) measurements across a range of length and time scales. The instrument will feature a high-stability 6-circle diffractometer, a moveable Long Distance Detector Positioner (LDDP) for positioning a large pixel array detector, and a removable flight path assembly. For intermediate sample to detector distances of 1.5 to 2 meters, a large pixel array detector will be positioned on the diffractometer detector arm. For longer sample to detector distances up to 4 meters, an horizontal scattering geometry will be utilized based on the LDDP to position a second large pixel array detector. The LDDP will consist of a large granite base on which sits a combination of motorized stages. The base will sit on air casters that allow the LDDP to be coarsely posi-tioned manually within the enclosure. Final positioning of the detector will be achieved with the mounted stages. The spatial relationship between the sample and the free moving LDDP will be monitored using a laser tracking system. A moveable flight path will be supported by the diffractometer arm and a mobile floor support to mini-mize air scattering while using the LDDP. The WA-XPCS instrument has been designed with users and beamline staff in mind and will allow them to efficiently utilize the highly enhanced coherent beam provided by the APS Upgrade.
poster icon Poster WEPC13 [1.363 MB]  
DOI • reference for this paper ※  
About • paper received ※ 12 August 2021       paper accepted ※ 29 October 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)