Keyword: experiment
Paper Title Other Keywords Page
MOIO02 BM18, the New ESRF-EBS Beamline for Hierarchical Phase-Contrast Tomography SRF, detector, vacuum, GUI 1
 
  • F. Cianciosi, A.-L. Buisson, P. Tafforeau, P. Van Vaerenbergh
    ESRF, Grenoble, France
 
  BM18 is an ESRF-EBS beamline for hierarchical tomography, it will combine sub-micron precision and the possibility to scan very large samples. The applications will include biomedical imaging, material sciences and cultural heritage. It will allow the complete scanning of a post-mortem human body at 25 µm, with the ability to zoom-in in any location to 0.7 µm. BM18 is exploiting the high-energy-coherence beam of the new EBS storage ring. The X-ray source is a short tripole wiggler that gives a 300mm-wide beam at the sample position placed 172m away from the source. Due to this beam size, nearly all of the instruments are devel-oped in-house. A new building was constructed to ac-commodate the largest synchrotron white-beam Experi-mental Hutch worldwide (42x5-6m). The main optical components are refractive lenses, slits, filters and a chop-per. There is no crystal monochromator present but the combination of the optical elements will provide high quality filtered white beams, as well as an inline mono-chromator system. The energy will span from 25 to 350 keV. The Experimental Hutch is connected by a 120m long UHV pipe with a large window at the end, followed by a last set of slits. The sample stage can position, rotate and monitor with sub-micron precision samples up to 2,5x0.6m (H x Diam.) and 300kg. The resulting machine is 4x3x5m and weighs 50 tons. The girder for detectors carries up to 9 detectors on individual 2-axis stages. It moves on air-pads on a precision marble floor up to 38m behind the sample stage to perform phase contrast imag-ing at a very high energy on large objects. The commissioning is scheduled for the beginning of 2022; the first ’friendly users’ are expected in March 2022 and the full operation will start in September 2022.  
slides icon Slides MOIO02 [16.566 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOIO02  
About • paper received ※ 17 July 2021       paper accepted ※ 03 November 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB04 Four-Bounce Crystal Monochromators for the Sirius/LNLS Beamlines controls, alignment, cryogenics, synchrotron 29
 
  • M. Saveri Silva, L.M. Kofukuda, S.A.L. Luiz, A.P.S. Sotero, H.C.N. Tolentino, L.M. Volpe, G.S. de Albuquerque
    LNLS, Campinas, Brazil
  • L. Martins dos Santos, J.H. Řežende
    CNPEM, Campinas, SP, Brazil
 
  Funding: Ministry of Science, Technology, and Innovation (MCTI)
Beamlines of new 4th-generation machines present high-performance requirements in terms of preserving beam quality, in particular wavefront integrity and position stability at micro and nanoprobe stations. It brings about numerous efforts to cope with engineering challenges comprehending high thermal load, cooling strategy, crystal manufacturing, vibration sources, alignment and coupled motion control. This contribution presents the design and performance of a four-bounce silicon-crystal monochromator for the Sirius beamlines at the Brazilian Synchrotron Light Source (LNLS), which is basically composed of two channel-cut crystals mounted on two goniometers that counter-rotate synchronously. The mechanical design ascertained the demands for the nanoprobe and coherent scattering beamlines - namely, CARNAÚBA and CATERETÊ - focusing on solutions to minimize misalignments among the parts, to grant high stiffness and to ensure that the thermal performance would not impair beam characteristics. Hence, all parts were carefully simulated, machined, and measured before assembling. This work details mechanical, thermal, diagnostics, and dynamic aspects of the instruments, from the design phase to their installation and initial commissioning at the beamlines.
 
poster icon Poster MOPB04 [3.518 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB04  
About • paper received ※ 25 July 2021       paper accepted ※ 30 August 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB08 Vibration Assessment at the CARNAÚBA Beamline at Sirius/LNLS synchrotron, insertion-device, insertion, resonance 37
 
  • C.S.N.C. Bueno, F.A. Borges, G.R.B. Ferreira, R.R. Geraldes, L.M. Kofukuda, M.A.L. Moraes, G.B.Z.L. Moreno, D.V. Rocha e Silva, M.H.S. Silva, H.C.N. Tolentino, L.M. Volpe, V.B. Zilli, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) is the longest beamline at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS), working in the energy range between 2.05 and 15 keV and hosting two stations: the sub-microprobe TARUMÃ, with coherent beam size varying from 550 to 120 nm; and the nanoprobe SAPOTI, with coherent beam size varying from 150 to 30 nm. Due to the long distances from the insertion device to the stations (136 and 143 m) and the extremely small beam sizes, the mechanical stability of all opto-mechanical systems along the facility is of paramount importance. In this work we present a comprehensive set of measurements of both floor stability and modal analyses for the main components, including: two side-bounce mirror systems; the four-crystal monochromator; the Kirkpatrick-Baez (KB) focalizing optics; and the station bench and the sample stage at TARUMÃ. To complement the components analyses, we also present synchronized long-distance floor acceleration measurements that make it possible to evaluate the relative stability through different floor slabs: the accelerator slab, over which the insertion device and first mirror are installed; experimental hall slab, which accommodates the second mirror; and the slabs in satellite building, consisting of three inertial blocks lying over a common roller-compacted concrete foundation, the first with the monochromator and the remaining ones with an station each. In addition to assessing the stability across this beamline, this study benchmarks the in-house design of the recently-installed mirrors, monochromators and end-stations.
 
poster icon Poster MOPB08 [3.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB08  
About • paper received ※ 29 July 2021       paper accepted ※ 16 September 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC03 Diamond Refractive Optics Fabrication by Laser Ablation and at-Wavelength Testing laser, optics, synchrotron, FEM 59
 
  • S.P. Antipov, E. Gomez
    Euclid TechLabs, Solon, Ohio, USA
  • R. Celestre, T. Roth
    ESRF, Grenoble, France
 
  Funding: SBIR grant #DE-SC0013129
The next generation light sources will require x-ray optical components capable of handling large instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Diamond being radiation hard, low Z material with outstanding thermal properties is proposed for front pre-focusing optics applications. Euclid Techlabs had been developing x-ray refractive diamond lens to meet this need. Standard deviation of lens shape error figure gradually was decreased to sub-micron values. Post-ablation polishing procedure yields ~ 10nm surface roughness. In this paper we will report on recent developments towards beamline-ready lens including packaging and compound refractive lens stacking. Diamond lens fabrication is done by femtosecond laser micromachining. We had been using this technology for customization of other beamline components. Several application cases will be highlighted in this presentation: diamond anvils, x-ray flow cells and in-beam mirrors.
 
poster icon Poster MOPC03 [1.754 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC03  
About • paper received ※ 21 July 2021       paper accepted ※ 01 October 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC13 Recent Studies on the Vibration Response of NSLS-II Girder Support System damping, site, quadrupole, alignment 81
 
  • S.K. Sharma, C.J. Spataro
    BNL, Upton, New York, USA
 
  The designs of various girder support systems were reviewed recently in a MEDSI School tutorial*. A comparison of their horizontal transmissibility values in (2-100) Hz band showed that the NSLS-II girder support system had a lower horizontal transmissibility despite its first natural frequency being the lowest (~30 Hz). Detailed vibration tests and FE analyses have been performed to understand this anomaly and to assess the role of viscoelastic damping pads underneath the NSLS-II girders. The analyses were extended to include harmonic response to model viscoelastic properties and random vibrations to obtain relative motions between the magnets. The results of these new tests and FE analyses are discussed in this paper.
*S. Sharma, "Storage Ring Girder Issues for Low Emittance Storage Rings", Tutorial, Medsi School 2, Grenoble, France, October 2-25, 2019.
 
poster icon Poster MOPC13 [0.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC13  
About • paper received ※ 20 July 2021       paper accepted ※ 17 September 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC16 Validation of APS-U Magnet Support Design Analysis and Prediction alignment, photon, dipole, quadrupole 89
 
  • Z. Liu, W.G. Jansma, J. Nudell, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APS-U) accelerator magnets have stringent stability requirement*. The project schedule and budget did not allow for full prototyping of the final design. Therefore, the engineers relied on accurate simulation to ensure that the design would meet the specifications. Recently, assembly and free-boundary vibration tests have been done on the first article of the upstream quadrupole Doublet, Longitudinal gradient dipole and Multipole module (DLM-A). The top surface flatness of the girder and the magnet alignment measurement results demonstrate the static positioning requirement of magnet-to-magnet is met. The free-boundary condition modal test results were used to validate the FEA analysis used in the DLM-A design. This validation then confirms the predicted performance of the magnet support system design. Mode shapes and corresponding frequencies from the FEA modal analysis agree with the experimental modal analysis within an acceptable tolerance. The validation approves not only the procedure for accurate modeling of magnet support system that APS-U has developed, but also provides confidence in predicting the accelerator performance.
*Advanced Photon Source. (2019). APS Upgrade Project Final Design Report (APSU-2.01-RPT-003). Retrieved from https://www.aps.anl.gov/APS-Upgrade/Documents
 
poster icon Poster MOPC16 [0.807 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC16  
About • paper received ※ 23 July 2021       paper accepted ※ 13 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIO02 Mechatronics Approach for the Development of a Nano-Active-Stabilization-System controls, SRF, instrumentation, simulation 93
 
  • T. Dehaeze, J. Bonnefoy
    ESRF, Grenoble, France
  • C.G.R.L. Collette
    ULB, Bruxelles, Belgium
 
  Funding: This research benefited from a FRIA grant from the French Community of Belgium.
With the growing number of fourth generation light sources, there is an increased need of fast positioning end-stations with nanometric precision. Such systems are usually including dedicated control strategies, and many factors may limit their performances. In order to design such complex systems in a predictive way, a mechatronic design approach also known as "model based design", may be utilized. In this paper, we present how this mechatronic design approach was used for the development of a nano-hexapod for the ESRF ID31 beamline. The chosen design approach consists of using models of the mechatronic system (including sensors, actuators and control strategies) to predict its behavior. Based on this behavior and closed-loop simulations, the elements that are limiting the performances can be identified and re-designed accordingly. This allows to make adequate choices concerning the design of the nano-hexapod and the overall mechatronic architecture early in the project and save precious time and resources. Several test benches were used to validate the models and to gain confidence on the predictability of the final system’s performances. Measured nano-hexapod’s dynamics was shown to be in very good agreement with the models. Further tests should be done in order to confirm that the performances of the system match the predicted one. The presented development approach is foreseen to be applied more frequently to future mechatronic system design at the ESRF.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides TUIO02 [12.432 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUIO02  
About • paper received ※ 26 July 2021       paper accepted ※ 17 September 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOB01 Exactly-constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at CARNAÚBA Beamline alignment, optics, MMI, focusing 111
 
  • G.B.Z.L. Moreno, C.S.N.C. Bueno, R.R. Geraldes, F.R. Lena, S.A.L. Luiz, E.O. Pereira, H.C.N. Tolentino, Y.R. Tonin, W.H. Wilendorf
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Next-generation nanoprobes, empowered by diffraction-limited storage rings, as Sirius/LNLS, present high-performance requirements aiming at high spatial resolution and throughput. For the focusing optics, this means assuring a small and non-astigmatic probe, high flux density, and remarkably high position stability, while also preserving beam wavefront. At stations further dedicated to spectromicroscopy and in-situ experiments, these requirements add up to having achromatic design and suitable working distance, respectively. In this way, Kirkpatrick-Baez (KB) mirrors have been chosen as the most appropriate solution for Sirius focusing optics. At TARUMÃ*, the first delivered nanoprobe at Sirius, the KB focuses the beam down to a 120 nm spot size (>8 keV) with a 440 mm working distance. This brought the requirements on the mirror’s angular stability to less than 10 nrad RMS, surface quality to single-digit nanometers, and alignment tolerances to the range of hundreds of nrad, which can be even tighter for other nanoprobes. Such specifications are particularly challenging regarding clamping, vibration, and thermal expansion budgets, even testing optical metrology limits during alignment and validation phases. The resulting KB mechanism is an opto-mechanical system with an exactly-constrained, deterministic design**, and suspension modes well above 250 Hz, sufficiently coupling optics to sample in the same 6-DoF base. It provides low-order aberration corrections by single degree-of-freedom alignment with piezo actuators, while higher order aberrations from clamping and thermal deformations are mitigated by gluing each mirror to flexure-based mounting frames. This contribution presents the design, assembly, and commissioning of the KB system at TARUMÃ as a reference case.
*Tolentino, H.C.N., et al. "TARUMÃ station for the CARNAÚBA beamline at SIRIUS/LNLS" SPIE 11112 19
**Geraldes, R.R., et al. "The Design of Exactly-constrained X-ray Mirror Systems for Sirius." MEDSI18
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides TUOB01 [5.780 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUOB01  
About • paper received ※ 25 July 2021       paper accepted ※ 17 September 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOB02 Development of a Passive Tuned Mass Damper for Ultra-High Vacuum Beamline Optics damping, resonance, target, optics 115
 
  • F. Khan, D. Crivelli, J.H. Kelly, A. Male
    DLS, Oxfordshire, United Kingdom
 
  Vibration in beamline optics can degrade the quality of experiments: the resulting movement of a mirror increases the x-ray beam position uncertainty, and introduces flux variations at the sample. This is normally dealt with by averaging data collection over longer periods of time, by slowing down the data acquisition rates, or by accepting lower quality / blurred images. With the development of faster camera technology and smaller beam sizes in next generation synchrotron upgrades, older optics designs can become less suitable, but still very expensive to redesign. Mechanically, mirror actuation systems need to be a balance between repeatability of motion and stability. This normally leads to designs that are ’soft’ and have resonant modes at a relatively low frequency, which can be easily excited by external disturbances such as ground vibration and local noise. In ultra-high vacuum applications the damping is naturally very low, and the amplification of vibration at resonance tends to be very high. At Diamond we designed a process for passively damping beamline mirror optics. First, we analyse the mirror’s vibration modes using experimental modal analysis; we then determine the tuned mass damper parameters using mathematical and dynamic models. Finally, we design a flexure-based metal tuned mass damper which relies on eddy current damping through magnets and a conductor plate. The tuned mass damper can be retrofitted to existing optics using a clamping system that requires no modification to the existing system. In this conference paper we show a case study on a mirror optic on Diamond Light Source’s small molecule single crystal diffraction beamline, I19.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides TUOB02 [1.568 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUOB02  
About • paper received ※ 06 July 2021       paper accepted ※ 14 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA06 Study the Active Vibration Control System of the Parallel 6-DOF Platform controls, damping, software, synchrotron 131
 
  • R.H. Liu, H.Y. He, Z.Y. Ke, L. Liu, X.J. Nie, C.J. Ning, A.X. Wang, Y.J. Yu, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • L. Kang, J.S. Zhang
    IHEP, Beijing, People’s Republic of China
  • G.Y. Wang
    Institute of High Energy Physics, CAS, Guangdong, People’s Republic of China
 
  Funding: National Natural Science Foundation of China 11905231
With the development of high-energy synchrotron radiation light source with high energy, high brightness, low emittance and nano-scale light spot, accelerators and beamline stations have higher requirements for the stability of the system, and active vibration isolation technology has been paid more and more attention. It has become the key technology for the development of major scientific devices (such as high-energy synchrotron radiation light source, free electron laser, etc.) in the future. In this paper, an active vibration control system driven by piezoelectric ceramic actuator with strong adaptability is designed. NI Compact-RIO real-time control system and Fx-LMS adaptive filter control algorithm are used for the active vibration control system. The identification method of input and output channels and the active control module are simulated by MATLAB. And an active vibration control system based on a parallel 6-DOF platform was built for experimental verification. The experimental results show that the designed active vibration control system has a good control effect for low-frequency micro-vibration.
 
poster icon Poster TUPA06 [0.600 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA06  
About • paper received ※ 11 July 2021       paper accepted ※ 14 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA08 Performance of a Double Crystal Monochromator Prototype for HEPS under Water Cooling Condition at a Wiggler Beamline of BSRF SRF, synchrotron, wiggler, hardware 135
 
  • H. Liang, W.F. Sheng, H. Shi, Y.M. Yang, L.R. Zheng
    IHEP, Beijing, People’s Republic of China
 
  Funding: This research is supported by National Natural Science Foundation of China (NSFC) (No.11905243).
The performance of monochromator is crucial to the performance of a beamline, especially for a 4th genera-tion synchrotron light source. To find out the perfor-mance of the monochromator prototype built for the HEPS project, it was tested at a wiggler beamline of BSRF with water cooling. The cooling of the crystals was measured by rocking curve broadening at different energy and cooling seems to be not enough due to indium foils. The repeatability in 1 hour was about 0.1 eV. The energy drift in 9 hours after the beam hit the beam-line was 0.4 eV at the Cu K edge. The short-term stability was tested with synchrotron beam under various cooling condition, and results between 4.4 nrad to around 400 nrad were observed. In conclusion, some performances are satisfying, but further improvements should be carried out in the future.
 
poster icon Poster TUPA08 [2.346 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA08  
About • paper received ※ 06 August 2021       paper accepted ※ 15 October 2021       issue date ※ 03 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA16 Design and Development of the Advanced Diffraction and Scattering Beamlines at the Australian Synchrotron detector, synchrotron, operation, alignment 150
 
  • B.J. McMahon, J.E. Auckett, M. Fenwick, R.B. Hogan, J.A. Kimpton, R. Lippi, S. Porsa
    AS - ANSTO, Clayton, Australia
 
  The ADS beamlines are the fifth and sixth beamlines being built within the Australian Synchrotron/ANSTO BRIGHT program The two beamlines (ADS-1 and ADS-2) will operate independently with the beam generated by a powerful super-conducting multipole wiggler (SCMPW). ADS-1 will have tunable collimating optics that will combine with a fixed exit double crystal Laue monochromator (DCLM) to provide white, pink and monochromatic beam (50-150 keV) to a large end-station located outside the main synchrotron building. ADS-1 will accommodate experiments using a variety of sample stages capable of positioning large and heavy samples (up to 300 kg). The second ADS beamline, ADS-2, will take a deflected beam from the main beam using a side-bounce monochromator (SBM) that produces three monochromatic energies from 45 keV - 90 keV. The SCMPW source for the beamline produces a beam of 45 kW at 4.5 T. The major optics of the beamline include a cryogenic SBM and a cryogenic DCLM, a transfocator and multilayer VFM. The high heat load on the front end and upstream monochromator represented key challenges for the beamline design. Innovative approaches to thermal management have been developed. The high radiation environment required additional safety protocols to be implemented for beamline operation. The primary beamline endstation utilises a large gantry robot to independently position up to 4 detectors in an envelope of up to 8x3x0.3 m with a positional repeatability of ± 0.01 mm. The large motion envelope gives users access to large Q-range and allows flexibility for users to utilise large bespoke sample environments. The ADS beamlines project encompasses design, procurement, build/installation and commissioning phases. The beamline will commence user operations in July 2023.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA16  
About • paper received ※ 29 July 2021       paper accepted ※ 15 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB05 Investigation of Thermal Instabilities in the ALBA Cooling System, Based on Numerical Simulations and Experimental Measurements simulation, operation, synchrotron, background 153
 
  • F. Hernández
    ESEIAAT, Terrassa, Spain
  • E. Ayas, J.J. Casas, C. Colldelram, Ll. Fuentes, J. Iglesias, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  This paper presents an investigation into the thermal instability problems that currently affect the ALBA Cooling System. During these periods of instabilities, which occur for a few hours every week of operation, there are deviations up to +1.5 °C, concerning the nominal temperature of 23 ± 0.2 °C in the four rings of ALBA: Service Area, Booster, Storage and Experimental Hall. This problem has a direct impact on the quality of the beam of the Accelerator. Previous studies have preliminarily concluded that the causes of this problem are due to (1) thermohydraulic anomalies in the operation of the external cogeneration plant, which supplies cold water to ALBA, and (2) cavitation problems in the pumping system (the water mass flow has been reduced to 67% of its nominal value to temporarily mitigate the cavitation). In order to confirm these hypotheses and propose solutions to the problem, an investigation has been developed making use of one-dimensional thermohydraulic simulations, performing Computational Fluid Dynamic (CFD) studies, statistical evaluations of data taken from our control system, and systematic flow measurements in critical areas, with ultrasonic flowmeters. As a result of this research, a set of solutions and recommendations are finally proposed to solve this problem.  
slides icon Slides TUPB05 [2.933 MB]  
poster icon Poster TUPB05 [2.401 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB05  
About • paper received ※ 22 July 2021       paper accepted ※ 05 November 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB07 Vacuum Analysis of a Corrugated Waveguide Wakefield Accelerator vacuum, simulation, GUI, wakefield 160
 
  • K.J. Suthar, S. Sorsher, E. Trakhtenberg, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: This is based upon work supported by LDRD funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-06CH11357.
The vacuum level in a 2 mm diameter, 0.5 m-long copper corrugated waveguide tube proposed* for a compact high repetition rate wakefield accelerator has been investigated. The analytical calculations have been found to be in good agreement with a result of computer modeling using a finite element method. A representative experiment has been conducted using a smooth copper tube with the same diameter as the corrugated tube and a 1/3 length of the corrugated tube. The vacuum level calculated for this experiment agrees well with the measurement.
*A. Zholentset et al., inProc. 9th International Particle Accelerator Conference (IPAC’18), Vancouver, BC, Canada, 29 April-04 May 2018, ser. IPAC Conference, pp. 1266’1268.
 
poster icon Poster TUPB07 [0.954 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB07  
About • paper received ※ 22 July 2021       paper accepted ※ 29 October 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC07 Utilizing Additive Manufacturing to Create Prototype and Functional Beamline Instrumentation and Support Components instrumentation, photon, vacuum, feedback 189
 
  • D.P. Jensen Jr.
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-D6CH11357
The world of beamline science is often fast-paced and dynamic. One of the major challenges in this environment is to be able to design, manufacture and then implement new items for use on the beamlines in a fast and accurate manner. Many times, this involves iterating the design to address unknown or new variables which were not present at the beginning of the project planning task. Through the use of additive manufacturing, I have been able to support the user programs of various (APS) Advanced Photon Source beamlines* across multiple scientific disciplines. I will provide a few detailed examples of Items that were created for specific beamline applications and discuss what benefits they provided to the pertinent project. I will also talk about why choosing consumer-level printer options to produce the parts has been the direction I went and the pros and cons of this decision. Primarily, this choice allowed for quicker turnaround times and the ability to make more frequent changes in an efficient manner. Currently, we are utilizing only the fused deposition modeling (FDM) type printers but I am exploring the addition of UV-activated resin printing, exotic materials that can be utilized using the current toolset, and the possibility of commercial metal printing systems. This technology has been a game-changer for the implementation of new support items and instrumentation over the last couple of years for the different disciplines I am supporting. I will discuss how the roadmap ahead and what the evolving technologies could potentially allow us to do.
*Thanks to the members of the DYS, MM, and TRR groups for their collaboration.
 
poster icon Poster TUPC07 [1.268 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC07  
About • paper received ※ 22 July 2021       paper accepted ※ 06 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOA01 CAD Integration for PETRA-IV lattice, interface, FEL, photon 215
 
  • B. List, L. Hagge, M. Hüning, D. Miller, P.-O. Petersen
    DESY, Hamburg, Germany
 
  The PETRA-IV next-generation synchrotron radiation source planned at DESY is currently in preparation as successor of PETRA-III, with a completely new accelerator and a new experimental hall, while existing buildings, tunnels and experimental beamlines will be retained where possible. The Technical Design Report is due to be completed by the end of 2022. A CAD integration model has been set up for the complete accelerator and photon science complex. It combines the contributions of all relevant trades, the accelerator components, supply infrastructure, installations, frames, tunnels and buildings, and the design of the campus. The CAD model structure is aligned with the project’s part breakdown structure (PBS) and the Work Breakdown Structure (WBS) to facilitate integration with systems engineering and reflect responsibility within the project organization. Within the model, it is possible to switch between different levels of detail for space allocation (DG1 - "black box"), interface definition (DG2 - "grey box") and detailed design (DG3 - "white box"), separating layout from design, while ensuring their consistency. Placement of accelerator components is directly governed by the lattice through direct access to spreadsheet data, allowing fast design changes after a lattice update and ensuring consistency between mechanical and lattice design. The resulting model will support the complete facility lifecycle, from layout and design to fabrication, installation and operation. The presentation explains the tasks and requirements of the CAD integration process and uses examples to explain the structure and the modeling methodology of the CAD integration model.  
slides icon Slides WEOA01 [9.470 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEOA01  
About • paper received ※ 12 August 2021       paper accepted ※ 16 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA06 The Beamline Motor Control System of Taiwan Photon Source controls, vacuum, software, operation 232
 
  • C.F. Chang, C.Y. Liu
    NSRRC, Hsinchu, Taiwan
 
  Different experiments have different features, so does the optical design; however, all of them are necessary to be adjusted according to mechanism. For example, adjusting mechanism of optical element is often based on stepper motor, for stepper motor possesses high resolution ability, which can adjust mechanism to precise location. This study illustrates how motor system of our Taiwan Photon Source integrates adjusting mechanisms of stepper motor on beamline. In addition, the firmware of close-loop system is cooperated to further improve veracity of location.  
poster icon Poster WEPA06 [0.798 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA06  
About • paper received ※ 05 July 2021       paper accepted ※ 19 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB08 Multibody Simulations with Reduced Order Flexible Bodies Obtained by FEA simulation, interface, damping, SRF 286
 
  • P. Brumund, T. Dehaeze
    ESRF, Grenoble, France
  • T. Dehaeze
    PML, Liège, Belgium
 
  Tighter specifications in synchrotron instrumentation development force the design engineers more and more often to choose a mechatronics design approach. This includes actively controlled systems that need to be properly designed. The new Nano Active Stabilization System (NASS) for the ESRF beamline ID31 was designed with such an approach. We chose a multi-body design modelling approach for the development of the NASS end-station. Significance of such models depend strongly on its input and consideration of the right stiffness of the system’s components and subsystems. For that matter, we considered sub-components in the multi-body model as reduced order flexible bodies representing the component’s modal behaviour with reduced mass and stiffness matrices obtained from finite element analysis (FEA) models. These matrices were created from FEA models via modal reduction techniques, more specifically the component mode synthesis (CMS). This makes this design approach a combined multibody-FEA technique. We validated the technique with a test bench that confirmed the good modelling capabilities using reduced order flexible body models obtained from FEA for an amplified piezoelectric actuator (APA).  
poster icon Poster WEPB08 [1.486 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB08  
About • paper received ※ 16 July 2021       paper accepted ※ 27 September 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB12 ForMAX Endstation - a Novel Design Combining Full-Field Tomography with Small- and Wide-Angle X-Ray Scattering detector, vacuum, operation, scattering 289
 
  • J.B. González Fernández, S.A. McDonald, K. Nygard, L.K. Roslund
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: The construction of the ForMAX beamline is funded by the Knut and Alice Wallenberg Foundation.
ForMAX is a new beamline at the MAX IV Laboratory for multi-scale structural characterization of hierarchical materials from nm to mm length scales with high temporal resolution. This is achieved by combining full-field microtomography with small- and wide-angle X-ray scattering (SWAXS) in a novel manner. The principal components of the endstation consist of two units of beam conditioning elements, a sample table, an evacuated flight tube and a detector gantry. The beam conditioning units include a diamond vacuum window, an attenuator system, a fast shutter, a slit collimation system, two sets of compound refractive lenses, three X-ray beam intensity monitors, a beam viewer and a telescopic vacuum tube. The sample table has been optimized with respect to flexibility and load capacity, while retaining sub-micron resolution of motion and high stability performance. The nine metre long and one metre diameter evacuated flight tube contains a motorised detector trolley, enabling the sample-detector position for small-angle X-ray scattering (SAXS) to be easily adjusted under vacuum conditions. Finally, a two metre high and two metre wide granite gantry permits independent and easy movement of the tomography microscope and wide-angle X-ray (WAXS) detector in and out of the X-ray beam. To facilitate propagation-based phase-contrast imaging and mounting of bulky sample environments, the gantry is mounted on motorized floor rails. All these characteristics will allow to combine multiple complementary techniques sequentially in the same experiment with fast efficient switching between setups. The ForMAX endstation is presently in the design and construction phase, with commissioning expected to commence early 2022.
 
poster icon Poster WEPB12 [1.955 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB12  
About • paper received ※ 16 July 2021       paper accepted ※ 16 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB13 Design and Commissioning of the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS synchrotron, detector, vacuum, instrumentation 292
 
  • R.R. Geraldes, C.S.N.C. Bueno, L.G. Capovilla, D. Galante, L.C. Guedes, L.M. Kofukuda, G.N. Kontogiorgos, F.R. Lena, S.A.L. Luiz, G.B.Z.L. Moreno, I.T. Neckel, C.A. Perez, A.C. Piccino Neto, A.C. Pinto, C. Sato, A.P.S. Sotero, V.C. Teixeira, H.C.N. Tolentino, W.H. Wilendorf, J.L. da Silva
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
TARUMÃ is the sub-microprobe station of the CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) beamline at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). It has been designed to allow for simultaneous multi-analytical X-ray techniques, including diffraction, spectroscopy, fluorescence and luminescence and imaging, both in 2D and 3D. Covering the energy range from 2.05 to 15 keV, the fully-coherent monochromatic beam size varies from 550 to 120 nm after the achromatic KB (Kirkpatrick-Baez) focusing optics, granting a flux of up to 1e11ph/s/100mA at the probe for high-throughput experiments with flyscans. In addition to the multiple techniques available at TARUMÃ, the large working distance of 440 mm after the ultra-high vacuum (UHV) KB system allows for another key aspect of this station, namely, a broad range of decoupled and independent sample environments. Indeed, exchangeable modular setups outside vacuum allow for in situ, in operando, cryogenic and/or in vivo experiments, covering research areas in biology, chemistry, physics, geophysics, agriculture, environment and energy, to name a few. An extensive systemic approach, heavily based on precision engineering concepts and predictive design, has been adopted for first-time-right development, effectively achieving altogether: the alignment and stability requirements of the large KB mirrors with respect to the beam and to the sample*; and the nanometer-level positioning, flyscan, tomographic and setup modularity requirements of the samples. This work presents the overall station architecture, the key aspects of its main components, and the first commissioning results.
* G.B.Z.L. Moreno et al. "Exactly constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at the CARNAÚBA Beamline", presented at MEDSI’20, paper TUOB01, this conference.
 
poster icon Poster WEPB13 [2.936 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB13  
About • paper received ※ 25 July 2021       paper accepted ※ 28 September 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB16 CFD Predictions of Water Flow Through Impellers of the ALBA Centrifugal Pumps and Their Aspiration Zone. An Investigation of Fluid Dynamics Effects on Cavitation Problems operation, simulation, distributed, synchrotron 299
 
  • A. González Romero
    ESEIAAT, Terrassa, Spain
  • J.J. Casas, C. Colldelram, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Currently, the ALBA refrigeration system pumps present cavitation when operating at their nominal regime. To alleviate this phenomenon temporarily until a definitive solution was found, the water flow was reduced to 67% of its nominal value. As this flow exchanges heat with the cooling water produced in an external cogeneration plant, modifying the working point of the pumps resulted in a reduction of the Accelerator cooling capacity. However, even at such low flow conditions, the flow has an anomalous oscillatory behaviour in the distributor of the aspiration zone, implying that the cause may be in a bad dimensioning of the manifold. This paper presents a study of Computational Fluid Dynamics (CFD) applied to the aspiration zones of the pumps, to investigate the effects of fluid dynamics on cavitation problems and understand what may be happening in the system. The need for such research arises from the urge to recover the accelerator cooling capacity and the constant pursuit for the improvement of the system. The geometries for this study include the general manifold in the aspiration zone and a simplified model of the pump impeller. The simulations have been carried out with the ANSYS-FLUENT software. Studies performed include considering the total water flow in nominal and under current operating conditions. In addition, the cases in which the flow is distributed through the manifold tubes in uniform and non-uniform ways have been treated separately. Pressure and velocity fields are analysed for various turbulence models. Finally, conclusions and recommendations to the problem are presented.  
poster icon Poster WEPB16 [0.794 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB16  
About • paper received ※ 27 July 2021       paper accepted ※ 28 September 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC03 Electrochemistry and Microfluidic Environments for the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS controls, interface, synchrotron, detector 310
 
  • W.H. Wilendorf, R.R. Geraldes, L.M. Kofukuda, I.T. Neckel, H.C.N. Tolentino
    LNLS, Campinas, Brazil
  • P.S. Fernández
    UNICAMP, Campinas, São Paulo, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) is a state-of-the-art multi-technique beamline at the 4th-generation Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS), with achromatic optics and fully-coherent X-ray beam in the energy range between 2.05 and 15 keV. At the TARUMÃ station, the in-vacuum KB focusing system has been designed with a large working distance of 440 mm, allowing for a broad range of independent sample environments to be developed in open atmosphere to benefit from the spot size between 550 to 120 nm with a flux in the order of 1e11 ph/s/100mA. Hence, together with a number of different detectors that can be simultaneously used, a wide variety of studies of organic and inorganic materials and systems are possible using cutting-edge X-ray-based techniques in theμand nanoscale, including coherent diffractive imaging (CDI), fluorescence (XRF), optical luminescence (XEOL), absorption spectroscopy (XAS), and diffraction (XRD). Even though samples over the centimeter range can be taken at Tarumã, the small beam and relatively low energies point towards optimized and reduced-size sample holders for in situ experiments. This work describes two related setups that have been developed in-house: a small-volume electrochemical cell with static fluid*; and another multifunctional environment that can be used both as a microfluidic device and as an electrochemistry cell that allows for fluid control over samples deposited on a working electrode. The mechanical design of the devices, as well as the architecture for the fluid and electrical supply systems, according to the precision engineering concepts required for nanopositioning performance, are described in details.
*Vicente, Rafael A., et al., "Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis," ACS nano (2021).
 
poster icon Poster WEPC03 [2.107 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC03  
About • paper received ※ 29 July 2021       paper accepted ※ 19 October 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC07 Thermal Model Validation for the Cryogenic Mirror Systems for Sirius/LNLS synchrotron, radiation, cryogenics, optics 320
 
  • L.M. Volpe, J.C. Corsaletti, B.A. Francisco, R.R. Geraldes, M.S. Silva
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
One of the challenges of fourth-generation synchrotron light sources as Sirius at the Brazilian Synchrotron Light Laboratory (LNLS) is the high power density that may affect the beamline optical elements by causing figure deformations that deteriorate the quality of the beam. Indeed, surface specifications for height errors of X-ray mirrors are often within a few nanometers. To deal with these thermal management challenges, thermo-mechanical designs based on cryogenic silicon have been developed, taking advantage of its high thermal conductance and low thermal expansion in temperatures of about 125 K. A liquid nitrogen (LN2) cryostat connected to the optics by copper braids has been used to handle moderate power loads, reducing costs when compared to closed-circuit LN2 cryocoolers and mechanically decoupling flow-induced vibrations from the optics. To guarantee the functionality of such systems, lumped mass thermal models were implemented together with auxiliary finite elements analyses. With the first systems in operation, it has been possible to compare and validate the developed models, and to carry out optimizations to improve them for future projects, by adjusting parameters such as emissivity, thermal contact resistance, and copper braid conductance. This work presents the updated models for CARNAÚBA and CATERETÊ beamlines as reference cases.
 
poster icon Poster WEPC07 [18.496 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC07  
About • paper received ※ 12 August 2021       paper accepted ※ 28 September 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC12 A New Experimental Station for Liquid Interface X-Ray Scattering At NSLS-II Beamline 12-ID detector, vacuum, scattering, operation 330
 
  • D.M. Bacescu, L. Berman, S. Hulbert, B. Ocko, Z. Yin
    BNL, Upton, New York, USA
 
  Funding: National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated by Brookhaven National Laboratory, under Contract No. DE-SC0012704.
Open Platform and Liquids Scattering (OPLS) is a new experimental station recently built and currently being commissioned at the Soft Matter Interfaces (SMI) beamline 12-ID at NSLS-II. The new instrument expands SMI’s beamline scientific capabilities via the addition of X-ray scattering techniques from liquid surfaces and interfaces. The design of this new instrument, located inside the 12-ID beamline shielding enclosure (hutch B), is based on a single Ge (111) crystal deflector, which bounces the incident x-ray beam downward towards a liquid sample which must be maintained in a horizontal orientation (gravity-driven consideration). The OPLS instrument has a variable deflector-to-sample distance ranging from 0.6 m to 1.5 m. X-ray detectors are mounted on a 2-theta scattering arm located downstream of the sample location. The 2-theta arm is designed to hold up to three X-ray detectors, with fixed 2-theta angular offsets, each dedicated to a different X-ray technique such as X-ray reflectivity, grazing-incidence X-ray scattering, and small- and wide-angle X-ray scattering. Currently, the OPLS experimental station intercepts the SMI beam that otherwise propagates to the experimental endstation located in hutch C and can be retracted to a ’parking’ position laterally out of this beam to allow installation of a removable beam pipe that is needed to support operations in hutch C. The design of OPLS is flexible enough to quickly adapt to a planned future configuration of the SMI beamline in which a OPLS is illuminated separately from the main SMI branch via a second, canted undulator source and a separate photon delivery system. In this future configuration, both branches will be able to operate independently and simultaneously.
 
poster icon Poster WEPC12 [9.290 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC12  
About • paper received ※ 28 July 2021       paper accepted ※ 28 September 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOB01 Thermal Contact Conductance in a Typical Silicon Crystal Assembly Found in Particle Accelerators interface, simulation, controls, ECR 353
 
  • P. Sanchez Navarro
    DLS, Oxfordshire, United Kingdom
 
  Every mirror at Diamond Light Source (the UK’s Particle Accelerator) has been installed with the premise of clamping the cooling copper manifolds as lightly as possible to minimize distortion. The problem with this approach is that the Thermal Contact Conductance (TCC) depends on the applied pressure among other factors*. The assembly is usually a symmetric stack of Copper - Indium Foil - Silicon Crystal - Indium Foil - Copper. Variables that interest the most are those that are easily adjustable in the set-up assembly (number of clamps, pressure applied and cooling water flow rate) PT100 temperature sensors have been used along the surface of the crystal and along the surface of the copper manifolds. Custom PCB units have been created for this project to act as a mean of collecting data and Matlab has been used to plot the temperature measurements vs. time. Another challenge is the creation of an accurate model in Ansys that matches reality up to a good compromise where the data that is being recorded from the sensors matches Ansys results within reason.
*Gilmore DG. Spacecraft thermal control handbook. Volume I, Volume I, [Internet]. 2002. Available from: http://app.knovel.com/hotlink/toc/id:kpSTCHVFT2/spacecraft-thermal-control
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides THOB01 [11.322 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-THOB01  
About • paper received ※ 20 July 2021       paper accepted ※ 13 October 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)