Keyword: gun
Paper Title Other Keywords Page
TUPA02 Design of Remote Helium Mass Spectrometer Leak Detector vacuum, injection, detector, controls 123
 
  • H.Y. He, H. Song
    IHEP, Beijing, People’s Republic of China
  • J.M. Liu
    DNSC, Dongguan, People’s Republic of China
  • R.H. Liu, G.Y. Wang
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Leak detection is the key to get a good vacuum system. For the dangerous areas, or facility with complicit structure required to be detected online, it is a hard mask to seek for the suspected leaks one after another. After studying the basic principle of helium mass leak detection, design a remote leak detector based on the PLC, as well as multi monitoring cameras, which can achieve successful injection and sniffer probe leak detection in the range of 270 degree. Compared with the manual operation, this device aims at accurately and reliably detecting leak rate, which can greatly provide technique support of online leak detection. And it can bring the value of reducing the labor intensity and ensuring personal safety.  
poster icon Poster TUPA02 [0.195 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA02  
About • paper received ※ 05 July 2021       paper accepted ※ 14 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA15 Processing of HEPS Low Energy Transport Line Collimator vacuum, booster, linac, status 148
 
  • J.B. Yu, J.X. Chen, H.Y. He, L. Liu, R.H. Liu, X.J. Nie, C.J. Ning, G.Y. Wang, A.X. Wang, Y.J. Yu, J.S. Zhang, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • L. Kang
    IHEP, Beijing, People’s Republic of China
 
  Funding: Natural Science Foundation of Guangdong Province:2018A030313959
In order to protect the equipment such as BPM at low energy transport line (LB), a momentum collimator is designed with one movable absorber. This paper will show the mechanical design and manufacturing of the collimator.
 
poster icon Poster TUPA15 [0.374 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA15  
About • paper received ※ 20 July 2021       paper accepted ※ 29 October 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB01 LINAC Section 3 and 4 Replacement at the Canadian Light Source linac, GUI, solenoid, simulation 266
 
  • X. Li, X. Shen, R. Zwarich
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source Inc. (CLSI), opened in 2004 and located in Saskatoon, Saskatchewan, Canada, is a third-generation synchrotron light source facility with a 2.9 GeV storage ring. CLSI was built based on the Saskatchewan Accelerator Laboratory (SAL) with its LINAC. The SAL LINAC was built in 1960s and refurbished to operate at 250 MeV in 2002. It was also de-signed at an average beam power up to 46KW. To be used by CLS, the LINAC was modified for operation at pulse power levels of 25 MW with the current 100 mA. The modified LINAC consists of an electron gun and section 0 to 6, Energy Compression System (ECS) and Section 7. The LINAC has kept a steady performance throughout the years, along with many repairs and replacements ’ most of which are preventative. The original Varian type accelerating Sections are planned to be replaced gradual-ly by SLAC type Sections. Section 3 and 4 are two of the original 3 Varian type sections left in CLS - with over 55 years of service, they were accumulating vacuum leak problems from time to time. The replacement of Section 3 and 4 was completed in 2020. The mechanical consideration of the Section 3 and 4 replacement mainly includes upgrading supporting structures, designing Wave-guides, modifying LCW systems, getting solution to move the sections around in the LINAC tunnel, etc.  
poster icon Poster WEPB01 [1.859 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB01  
About • paper received ※ 13 July 2021       paper accepted ※ 27 September 2021       issue date ※ 29 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)