Keyword: insertion-device
Paper Title Other Keywords Page
MOPB08 Vibration Assessment at the CARNAÚBA Beamline at Sirius/LNLS experiment, synchrotron, insertion, resonance 37
  • C.S.N.C. Bueno, F.A. Borges, G.R.B. Ferreira, R.R. Geraldes, L.M. Kofukuda, M.A.L. Moraes, G.B.Z.L. Moreno, D.V. Rocha e Silva, M.H.S. Silva, H.C.N. Tolentino, L.M. Volpe, V.B. Zilli, G.S. de Albuquerque
    LNLS, Campinas, Brazil
  Funding: Ministry of Science, Technology and Innovation (MCTI)
CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) is the longest beamline at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS), working in the energy range between 2.05 and 15 keV and hosting two stations: the sub-microprobe TARUMÃ, with coherent beam size varying from 550 to 120 nm; and the nanoprobe SAPOTI, with coherent beam size varying from 150 to 30 nm. Due to the long distances from the insertion device to the stations (136 and 143 m) and the extremely small beam sizes, the mechanical stability of all opto-mechanical systems along the facility is of paramount importance. In this work we present a comprehensive set of measurements of both floor stability and modal analyses for the main components, including: two side-bounce mirror systems; the four-crystal monochromator; the Kirkpatrick-Baez (KB) focalizing optics; and the station bench and the sample stage at TARUMÃ. To complement the components analyses, we also present synchronized long-distance floor acceleration measurements that make it possible to evaluate the relative stability through different floor slabs: the accelerator slab, over which the insertion device and first mirror are installed; experimental hall slab, which accommodates the second mirror; and the slabs in satellite building, consisting of three inertial blocks lying over a common roller-compacted concrete foundation, the first with the monochromator and the remaining ones with an station each. In addition to assessing the stability across this beamline, this study benchmarks the in-house design of the recently-installed mirrors, monochromators and end-stations.
poster icon Poster MOPB08 [3.006 MB]  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 16 September 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPB13 Automated Mechanical Inspection and Calibration of Insertion Devices in APS Storage Ring operation, insertion, feedback, storage-ring 50
  • N.R. Weir, E. Gubbels
    ANL, Lemont, Illinois, USA
  Funding: Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
A novel technique has been developed to automatically inspect and calibrate the 53 permanent magnet insertion devices in the Advanced Photon Source (APS) storage ring. This technique employs standard frequency domain analysis to create easily identifiable signatures in an actionable format. We will discuss the mechanisms and actions taken behind various observed trends and its application for continuous monitoring and predictive maintenance of these devices. This technique has enabled predictive maintenance and provided new insights into optimizing device performance.
poster icon Poster MOPB13 [1.783 MB]  
DOI • reference for this paper ※  
About • paper received ※ 26 July 2021       paper accepted ※ 01 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEOA03 Updated High Heat Load Front-Ends for SLS 2.0 photon, radiation, synchrotron, synchrotron-radiation 221
  • D.M. Just, C. Pradervand
    PSI, Villigen PSI, Switzerland
  The Swiss Light Source (SLS) at the Paul Scherrer Institut (PSI) in Switzerland will undergo from 2021 to 2024 an upgrade named SLS 2.0 to increase brightness and coherence. This upgrade will have a significant impact on the existing front-ends. Due to the proven reliability and good concept, we plan a refurbishment strategy for all front-end (FE) components where possible. New source points for all beam-lines – resulting in shifts both lateral and tangential, newly developed insertion devices and bending magnets as well as spatial restrictions due to the multi bend achromat (MBA) design challenges this strategy. We demonstrate how we plan to deal with these challenges for the case of high heat load FEs. We will address how the acceptance of the FE was chosen due flux and power calculations of the insertion device and the design and thermal analysis of a novel primary aperture. The adaptions that will be made to the tungsten blade X-Ray beam positioning monitors (W-XBPM) and modifications on the photon shutter will be discussed. Furthermore, we will take a brief excursion on how we want to organize the refurbishment during the shutdown period of the upgrade.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
slides icon Slides WEOA03 [3.528 MB]  
DOI • reference for this paper ※  
About • paper received ※ 07 July 2021       paper accepted ※ 16 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA14 All Applications of the ALBA Skin Concept synchrotron, optics, detector, GUI 259
  • A. Crisol, A. Carballedo, C. Colldelram, N González, J. Juanhuix, J. Nicolás, L.R.M. Ribó, C. Ruget
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L.W.S. Adamson
    ASCo, Clayton, Victoria, Australia
  • J.B. González Fernández
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E.R. Jane
    FMB Oxford, Oxford, United Kingdom
  During the ALBA design phase, the protein macromolecular protein crystallography beamline, XALOC, required several in-house developments. The major part of these designs was at the end station where the necessity of customization is always much higher. The most relevant of these instruments was the beam conditioning elements table [1]. This accurate stage, which supports the diffractometer as well, includes the four movements required to align the components to the nominal beam as well as position the diffractometer. This design compacts, especially the vertical and pitch movements, both in a single stage, with a couple of stages for all four excursions. The solution maximise the stiffness and preserves at the same time the resolution close to 0.1µm while being able to withstand a half tone of payload. Thanks this compactness and performances this design concept, the vertical and pitch combined stage, was not only applied at XALOC for its diffractometer and detector table, but it has been widely adapted at several ALBA beamlines: at NCD-SWEET [2] as a detector table, a beam conditioning elements table [3] and sample table, at MSPD beamline as the KB table, at NOTOS beamline as metrology table, and also at the new ESA MINERVA beamline [4] for their sample mirror modules positioning. Beamlines have not been the only beneficiaries of this design, also different kind of instrumentation like an hall probe measuring bench [5], and even a stitching platform for the ALBA optics laboratory [6]. Moreover, the concept has outreach ALBA and has been adopted also at other facilities worldwide, synchrotrons and also scientific instrumentation suppliers around Europe. This poster presents most of the applications of the skin concept and their variations and main measured performances.  
poster icon Poster WEPA14 [2.221 MB]  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 22 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)