TUPC —  Tuesday Poster PM Session C   (27-Jul-21   14:15—15:15)
Paper Title Page
TUPC01 Study of Copper Microstructure Produced by Electroforming for the 180-GHz Frequency Corrugated Waveguide 178
 
  • K.J. Suthar, G. Navrotski, A. Zholents
    ANL, Lemont, Illinois, USA
  • P.R. Carriere
    RadiaBeam, Santa Monica, California, USA
 
  Funding: Work supported by Laboratory Directed Research and Development funding from Argonne National Laboratory, provided by the Director, Office of Science, of the US DOE under contract DE-AC02-06CH11357.
Fabrication of the corrugated structure that generates a field gradient 100 m-1 at 180 GHz is challenging and required an unconventional method of production. The corrugated waveguide with 2 mm inner diameter will be produced by electroplating copper on the aluminum mandrel as proposed in the reference*. A thin seed layer is usually applied to achieve uniform wetting to plate copper on the aluminum mandrel. The copper waveguide is retrieved by removing aluminum and the seed layer. Therefore, uniform copper plating and etching of the seed layer and the Aluminum mandrel is a crucial step to keep the surface free of impurities that are especially necessary for the RF application. Previous studies suggest that electroplated copper has variations in both electrical and mechanical properties compared with those of bulk copper from the batches of production. In this paper, we discuss the copper microstructure produced by the electroforming method and literature study on the variations, which can be attributed to the disparity of the crystallinity of grains structure in plated material.
*A. Zholentset al., "A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi-User X-ray Free-Electron Laser Facility, "in Proc. IPAC 18, 2018, pp. 1266-1268.
 
poster icon Poster TUPC01 [1.717 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC01  
About • paper received ※ 21 July 2021       paper accepted ※ 05 November 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC02 Bringing the Ground Up (When Is Two Less Than One?) 182
 
  • A.A. Khan, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade project has employed the use of high heat load dual mirror systems in the new feature beamlines being built. Due to the shallow operating angles of the mirrors at a particular beamline, XPCS, the two mirrors needed to be approximately 2.5 m apart to create a distinct offset. Two separate mirror tanks are used for this system. However, it is unclear if the vibrational performance of these tanks would be better if they were both mounted on one large plinth or each mounted on a small plinth. Using accelerometers at the installation location, the floor vibrations were measured. The resulting frequency response function was then imported into a Finite Element Analysis software to generate a harmonic response analysis. The two different plinth schemes were modeled and the floor vibration was introduced as an excitation to the analysis. The relative pitch angle (THETA Y) between the mirrors was evaluated as well as the relative gap between the mirrors (XMAG). Results showed that a single plinth reduces the relative XMAG (RMS) compared to two plinths by approximately 25%. However, the relative THETA Y (RMS), which is arguably more critical, is significantly lower by approximately 99.7% in two plinths when compared to a single plinth. Therefore, it is more effective to use two separate plinths over a longer distance as opposed to a single longer granite plinth.
 
poster icon Poster TUPC02 [0.503 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC02  
About • paper received ※ 23 July 2021       paper accepted ※ 15 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC05
Design and Fabrication of a Waveguide for Conductivity Measurement of Electroplated Copper at 170GHz - 200GHz  
 
  • A.E. Siy, N. Behdad, J.H. Booske
    UW-Madison, Madison, Wisconsin, USA
  • S.H. Lee, S. Sorsher, K.J. Suthar, E. Trakhtenberg, G.J. Waldschmidt, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by LDRD funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-06CH11357
Beam driven wakefield accelerators offer great potential for the realization of compact, low-cost x-ray free electron laser (XFEL) sources. Achieving high accelerating gradients in these devices requires the use of mm-wave RF structures which present a range of fabrication challenges due to their small size and tight dimensional tolerances. One promising technique for manufacturing these structures involves electroplating a mandrel with copper and subsequently dissolving the mandrel to leave behind the desired metal cavity. Because the resulting copper shell is electroplated, its purity, grain structure, and surface finish will be different from that of conventionally machined copper. Understanding the electrical and thermal performance of the electroformed components requires experimental measurement of the plated copper material properties. In this paper, an experiment for measuring the conductivity of electroplated copper at 170 GHz-200 GHz using a WR-5 waveguide meander is presented and the results are applied to the design of a corrugated waveguide wakefield accelerator.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC06 A Review of Ultrasonic Additive Manufacturing for Particle Accelerator Applications 185
 
  • J.A. Brandt
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
 
  Additive manufacturing (AM) technologies have been used for prototyping and production parts in many industries. However, due to process limitations and the unknown material properties of AM parts, there has been limited adoption of the technology in accelerator and light-source facilities. Ultrasonic Additive Manufacturing (UAM) is a hybrid additive-subtractive manufacturing process that uses a solid-state ultrasonic bonding mechanism attached to a CNC mill to join and machine metal parts in a layer-by-layer manner. The solid-state and hybrid nature of UAM ensures base material properties are retained and mitigates process limitations which traditionally inhibit integration of parts produced by other AM processes. This paper presents a review of the UAM process and its potential application to accelerator and beamline needs. Several specific areas are discussed including: replacement of traditional manufacturing approaches, such as explosion bonding to join dissimilar metals; improved internal cooling channel fabrication for thermal management; and imbedding of electronics and materials for more accurate remote sensing and radiation shielding.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC06  
About • paper received ※ 22 July 2021       paper accepted ※ 16 October 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC07 Utilizing Additive Manufacturing to Create Prototype and Functional Beamline Instrumentation and Support Components 189
 
  • D.P. Jensen Jr.
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-D6CH11357
The world of beamline science is often fast-paced and dynamic. One of the major challenges in this environment is to be able to design, manufacture and then implement new items for use on the beamlines in a fast and accurate manner. Many times, this involves iterating the design to address unknown or new variables which were not present at the beginning of the project planning task. Through the use of additive manufacturing, I have been able to support the user programs of various (APS) Advanced Photon Source beamlines* across multiple scientific disciplines. I will provide a few detailed examples of Items that were created for specific beamline applications and discuss what benefits they provided to the pertinent project. I will also talk about why choosing consumer-level printer options to produce the parts has been the direction I went and the pros and cons of this decision. Primarily, this choice allowed for quicker turnaround times and the ability to make more frequent changes in an efficient manner. Currently, we are utilizing only the fused deposition modeling (FDM) type printers but I am exploring the addition of UV-activated resin printing, exotic materials that can be utilized using the current toolset, and the possibility of commercial metal printing systems. This technology has been a game-changer for the implementation of new support items and instrumentation over the last couple of years for the different disciplines I am supporting. I will discuss how the roadmap ahead and what the evolving technologies could potentially allow us to do.
*Thanks to the members of the DYS, MM, and TRR groups for their collaboration.
 
poster icon Poster TUPC07 [1.268 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC07  
About • paper received ※ 22 July 2021       paper accepted ※ 06 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC08 Design and Development of AI Augmented Robot for Surveillance of High Radiation Facilities 192
 
  • K.J. Suthar, M. White
    ANL, Lemont, Illinois, USA
  • G.K. Mistri
    MSB, Naperville, Illinois, USA
  • A.K. Suthar, S.K. Suthar
    NVHS, Naperville, Illinois, USA
 
  Scientific instruments and utility equipment during the operation of high radiation facilities such as the Advanced Photon Source at the Argonne National laboratory express a challenge to monitor. To solve this, we are developing a self-guided artificially intelligent robot that can allow us to take images to create a thermal and spatial 3D map of its surroundings while being self-driven or controlled remotely. The overall dimension of the robotic vehicle is 20 in length, 7 in width, and 10 in height, which carries a depth perception camera to guide the path, an IR camera for thermography, as well as a cluster of sensors to assist in navigation and measure temperature, radiation, and humidity of the surrounding space. This inexpensive robot is operated by an Nvidia Jetson NanoTM. All controlling and image acquisition programs and routines are written in python for ease of integration with institution-specific operating systems such as EPICS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC08  
About • paper received ※ 26 July 2021       paper accepted ※ 02 November 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC09 Progress of Nano-Positioning Design for the Coherent Surface Scattering Imaging Instrument for the Advanced Photon Source Upgrade Project 196
 
  • J.W.J. Anton, M. Chu, Z. Jiang, S. Narayanan, D. Shu, J. Strzalka, J. Wang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
As part of the Advanced Photon Source Upgrade (APS-U) project, the Coherent Surface Scattering Imaging (CSSI) [1] instrument is currently being developed. One of the most important components of the CSSI instrument at the 9-ID beamline of the APS-U, the Kirkpatrick-Baez (K-B) mirror system, will focus hard X-rays to a diffrac-tion-limited size of 500 nanometers at a working distance of 550 mm. High angular stability (19 nrad for the hori-zontal mirror and 14 nrad for the vertical mirror) is speci-fied no just for the focused beamsize but, more important-ly, to ensure the beam stability at the detector position that is up to 24 m from the K-B mirrors. A large sample-to-detector distance (up to 23 m), one of the beamline’s unique features for achieving a sufficient coherent-imaging spatial oversampling, requires sample angular stability of 50 nrad. In CSSI scattering geometry, the vertically placed sample reflects X-rays in the horizontal direction at an extremely shallow angle. The design in-cludes two high-precision rotary stages for sample pitch (vertical axis) and yaw (horizontal axis). The current design of instrument’s nano-positioning stages [2] and metrology required to satisfy the stability and positioning requirements are discussed in this paper.
*T. Sun et al., Nat. Photonics 6, 586 (2012).
**D. Shu et al., this conference.
 
poster icon Poster TUPC09 [1.252 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC09  
About • paper received ※ 13 August 2021       paper accepted ※ 16 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC10 Modular Nanopositioning Flexure Stages Development for APS Upgrade K-B Mirror Nanofocusing Optics 199
 
  • D. Shu, J.W.J. Anton, L. Assoufid, S.J. Bean, D. Capatina, V. De Andrade, E.M. Dufresne, T. Graber, R. Harder, D. Haskel, K. Jasionowski, S.P. Kearney, A.A. Khan, B. Lai, W. Liu, J. Maser, S.T. Mashrafi, G.K. Mistri, S. Narayanan, C.A. Preissner, M. Ramanathan, L. Rebuffi, R. Reininger, O.A. Schmidt, X. Shi, J.Z. Tischler, K.J. Wakefield, D. Walko, J. Wang, X. Zhang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Kirkpatrick and Baez (K-B) mirror-based nanofocusing optics* will be applied to many beamlines endstation instruments for the APS-Upgrade (APS-U) project. Precision nanopositioning stages with nanometer-scale linear positioning resolution and nanoradian-scale angular stability are needed as alignment apparatus for the K-B mirror hard X-ray nanofocusing optics. For instance, at the APS-U 19-ID In Situ Nanoprobe beamline endstation**, to maintain stability of a 20-nm focal spot on the sample, nanofocusing K-B mirror system with 5-nrad angular stability is required. Similar angular resolution and stability are also required for APS-U 9-ID CSSI***, APS-U 34-ID ATOMIC**** and other beamline endstation instruments. Modular nanopositioning flexure stages have been developed for the K-B mirror nanofocusing optics, which includes: linear vertical and horizontal flexure stages, tip-tilting flexure stages, and flexure mirror benders for bendable nanofocusing K-B mirrors, to overcome the performance limitations of precision ball-bearing-based or roller-bearing-based stage systems. The mechanical design and preliminary test results are described in this paper.
* Kirkpartrick and Baez, JOSA. 1948; 38(9): 766-773.
** S. Kearney et al., this conference.
*** J. Anton et al., this conference.
**** C. Preissner et al., this conference.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC10  
About • paper received ※ 02 August 2021       paper accepted ※ 21 October 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC11 The HD-DCM-Lite: A High-Dynamic DCM with Extended Scanning Capabilities for Sirius/LNLS Beamlines 203
 
  • A.V. Perna, H.O.C. Duarte, R.R. Geraldes, M.A.L. Moraes, M. Saveri Silva, M.S. Souza, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
After successfully designing, installing, and commissioning two units of the High-Dynamic Double-Crystal Monochromator (HD-DCM) at the Brazilian Synchrotron Light Laboratory (LNLS) - Sirius, two more units are now required. Since they demand only a smaller energy range (5 to 35 keV), the total gap stroke of the new instruments can be significantly reduced, creating an opportunity to adapt the existing design towards the so-called HD-DCM-Lite. Removing the large gap adjustment mechanism allows a reduction of the main inertia by a factor of 5, enabling the HD-DCM-Lite to deliver energy flyscans of hundreds of eV reaching 20 cycles per second while keeping fixed exit and the pitch stability in the range of 10 nrad RMS (1 Hz - 2.5 kHz). Hence, an unparallel bridge between slow step-scan DCMs and fast channel-cut monochromators is created. This work presents the in-house development of the HD-DCM-Lite, focusing on its mechanical design, discussions on the ultimate scanning constraints (rotary stage torque, voice-coil forces, interferometers and encoders readout speed limits and subdivisional errors), and thermal management.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster TUPC11 [3.155 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC11  
About • paper received ※ 28 July 2021       paper accepted ※ 16 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC14 Copper Braid Heat Conductors for Sirius Cryogenic X-Ray Optics 207
 
  • F.R. Lena, G.V. Claudiano, J.C. Corsaletti, R.R. Geraldes, D.Y. Kakizaki, R.L. Parise, M. Saveri Silva, M.S. Souza, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The low emittance and high photon flux beam present at the 4th-generation Sirius synchrotron light source beamlines result in high energy densities and high heat loads at some specific X-ray optics such as monochromators and white beam mirrors. This challenges the design of such systems since the introduction of thermal stresses may lead to optical surface deformation and beam degradation. Thus, to keep the systems within acceptable deformations some of the optical elements are cryogenically cooled. However, this poses the requirements of decoupling the thermal sinks (cryostats) from the optics and the mechanisms to maintain their desired degrees of freedom for alignment and dynamic operation. In this context we present the development of low-stiffness copper-braid-based heat conductors, summarizing the motivation and main aspects regarding their fabrication and application at the beamlines.
 
poster icon Poster TUPC14 [1.783 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC14  
About • paper received ※ 28 July 2021       paper accepted ※ 19 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC15 A New Ultra-Stable Variable Projection Microscope for the APS Upgrade of 32-ID 211
 
  • S.J. Bean, V. De Andrade, A. Deriy, K. Fezzaa, T. Graber, J. Matus, C.A. Preissner, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
A new nano-computed tomography projection microscope (n-CT) is being designed as part the Advanced Photon Source Upgrade (APS-U) beamline enhancement at sector 32-ID. The n-CT will take advantage of the APS-U source and provide new capabilities to the imaging program at 32-ID. A Kirkpatrick and Baez (KB) mirror-based nanofocusing optics [1,2] will be implemented in this design. To meet the n-CT imaging goals, it is the desire to have sub 10 nanometer vibrational and thermal drift stability over 10-minute measurement durations between the optic and the sample. In addition to the stability requirements, it is desired to have a variable length sample projection axis of up to 450 mm. Such stability and motion requirements are challenging to accomplish simultaneously due to performance limitations of traditional motion mechanics and present a significant engineering challenge. To overcome these limitations, the proposed n-CT design incorporates granite air bearing concepts initially used in the Velociprobe [3]. These types of granite stages have been incorporated into many designs at APS [4] and at other synchrotron facilities [5]. Utilizing the granite air bearing concept, in tandem with other design aspects in the instrument, the requirements become reachable. A novel multi-degree of freedom wedge configuration is also incorporated to overcome space limitations. The design of this instrument is described in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC15  
About • paper received ※ 12 August 2021       paper accepted ※ 19 October 2021       issue date ※ 02 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC16
Precision Electrochemical Fabrication of Corrugated Waveguides  
 
  • D.X. Liu, H.M. Garich, T.D. Hall, M.E. Inman, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
  • X. Lu
    Northern Illinois University, DeKalb, Illinois, USA
  • X. Lu, J.G. Power, D.S. Scott, J. Shao
    ANL, Lemont, Illinois, USA
 
  Funding: The U.S. Department of Energy (DOE) provided financial support for this work under the contract award number: DE-SC0020782.
Advancements in high energy physics require continuous innovations in hardware to support the generation, amplification, transmission, modulation, and detection of radio frequency (RF) electromagnetic waves. Waveguides have garnered increasing interest due to their integral function in the transmission, amplification, and/or manipulation of electromagnetic waves. Waveguides operating in higher than conventional frequency ranges, e.g., 30 to 300 GHz, are of particular interest given the scaling of gradient and shunt impedance with frequency. These higher frequencies necessitate features, such as corrugations, with significantly smaller dimensions. However, traditional manufacturing approaches are inadequate, in terms of manufacturing precision and cost, to meet these requirements - thus, novel fabrication strategies are required. Herein, an economic fabrication approach for electroforming high-purity 26 GHz cylindrical copper waveguides with internal corrugations is presented. A custom, low-additive electrolyte was employed to mitigate impurity inclusion within the copper electroform, ensuring high-purity copper waveguides. Pulse-modulated waveforms employed during copper electrodeposition selectively controlled ionic transport as well as the subsequent deposit morphology and thus facilitate complete copper filling of the corrugations. Scale-up from ~2- to ~6-inch waveguides were demonstrated and confirm the versatility of the pulse-modulated electroforming strategy. A cold test of the ~2-inch copper waveguide using a vector network analyzer (VNA) was conducted. The results of the S-parameter measurements and the bead-pull test indicate reasonable agreement with the design by CST simulation, which validates the novel pulse-modulated electroforming approach.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)