WEPB —  Wednesday Poster PM Session B   (28-Jul-21   13:15—14:15)
Paper Title Page
WEPB01 LINAC Section 3 and 4 Replacement at the Canadian Light Source 266
 
  • X. Li, X. Shen, R. Zwarich
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source Inc. (CLSI), opened in 2004 and located in Saskatoon, Saskatchewan, Canada, is a third-generation synchrotron light source facility with a 2.9 GeV storage ring. CLSI was built based on the Saskatchewan Accelerator Laboratory (SAL) with its LINAC. The SAL LINAC was built in 1960s and refurbished to operate at 250 MeV in 2002. It was also de-signed at an average beam power up to 46KW. To be used by CLS, the LINAC was modified for operation at pulse power levels of 25 MW with the current 100 mA. The modified LINAC consists of an electron gun and section 0 to 6, Energy Compression System (ECS) and Section 7. The LINAC has kept a steady performance throughout the years, along with many repairs and replacements ’ most of which are preventative. The original Varian type accelerating Sections are planned to be replaced gradual-ly by SLAC type Sections. Section 3 and 4 are two of the original 3 Varian type sections left in CLS - with over 55 years of service, they were accumulating vacuum leak problems from time to time. The replacement of Section 3 and 4 was completed in 2020. The mechanical consideration of the Section 3 and 4 replacement mainly includes upgrading supporting structures, designing Wave-guides, modifying LCW systems, getting solution to move the sections around in the LINAC tunnel, etc.  
poster icon Poster WEPB01 [1.859 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB01  
About • paper received ※ 13 July 2021       paper accepted ※ 27 September 2021       issue date ※ 29 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB03 Magnet Measurement Systems for the Advanced Photon Source Upgrade 269
 
  • S.J. Izzo, C.L. Doose, A.K. Jain, W.G. Jansma
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source-Upgrade (APS-U) project* is under construction and will incorporate a new Multi-Bend Achromat (MBA) lattice. With this design, the new storage ring will require over 1320 new magnets that are being produced under build-to-print contracts to several vendors across the globe. Magnetic measurements are needed to characterize and fiducialize all these magnets to ensure field quality and alignment requirements are met. Seven specialized test benches were designed and built to meet the measurement requirements. These measurement benches may be classified into two groups. The first group is the field quality measurement that includes the strength of the main field and higher harmonics. The multipole magnets are measured using four rotating coil benches, whereas the longitudinal gradient dipoles are mapped using a Hall probe system. The second group is fiducialization that locates the magnetic center of the magnet using a rotating wire and relates it to magnet fiducials and reference surfaces using a laser tracker. This information accompanies each magnet through the module assembly and final installation in the ring to ensure that the magnet is aligned within the allowable tolerance. To date, about 65% of all magnets needed for the storage ring have been measured and fiducialized. Mechanical design of the measurement benches will be presented.
*Advanced Photon Source. (2017). APS Upgrade Project Preliminary Design Review Report (APSU-2.01-RPT-002). Retrieved from https://www.aps.anl.gov/APS-Upgrade/Documents.
 
poster icon Poster WEPB03 [1.286 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB03  
About • paper received ※ 16 July 2021       paper accepted ※ 06 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB04 Design and Fabrication Challenges of Transition Section for the CWA Module 273
 
  • S.H. Lee, W.G. Jansma, S. Sorsher, K.J. Suthar, E. Trakhtenberg, G.J. Waldschmidt, A. Zholents
    ANL, Lemont, Illinois, USA
  • A.E. Siy
    UW-Madison/PD, Madison, Wisconsin, USA
 
  Funding: Work support by Laboratory Directed Research and Development funding from Argonne National Lab, by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-06CH11357.
An effort to build Argonne’s Sub-THz AcceleRator (A-STAR) for a future multiuser x-ray free-electron laser facility proposed in [1] is underway at Argonne National Laboratory. The A-STAR machine will utilize a compact collinear wakefield accelerator (CWA) assembled in modules. To extract the wakefield and monitor beam position downstream of each module, a 45-mm-long transition section (TS) has been proposed and designed. This paper will discuss the design and fabrication chal-lenges for production of the TS.
*A. Zholents et al., "A conceptual design of a Compact Wakefield Accelerator for a high repetition rate multi user Xray Free-Electron Laser Facility," in Proc. IPAC’18, Canada, 2018, pp. 1266-1268.
 
poster icon Poster WEPB04 [2.052 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB04  
About • paper received ※ 14 July 2021       paper accepted ※ 16 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB05 Mechanical Design of a Compact Collinear Wakefield Accelerator 276
 
  • S.H. Lee, D.S. Doran, W.G. Jansma, S. Sorsher, K.J. Suthar, E. Trakhtenberg, G.J. Waldschmidt, A. Zholents
    ANL, Lemont, Illinois, USA
  • A.E. Siy
    UW-Madison/PD, Madison, Wisconsin, USA
 
  Funding: Work supported by Laboratory Directed Research and Development from Argonne National Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-06CH11357
Argonne National Laboratory is developing a Sub-THz AcceleRator (A-STAR) for a future multiuser x-ray free electron laser facility. The A-STAR machine will utilize a compact collinear wakefield accelerator (CWA) based on a miniature copper (Cu) corrugated waveguide as proposed*. The accelerator is designed to operate at a 20-kHz bunch repetition rate and will utilize the 180-GHz wakefield of a 10-nC electron drive bunch with a field gradient of 100 MVm’1 to accelerate a 0.3-nC electron witness bunch to 5 GeV. In this paper, we discuss specific challenges in the mechanical design of the CWA vacuum chamber module. The module consists of series of small quadrupole magnets with a high magnetic field gradient that houses a 2-mm diameter and 0.5-m-long corrugated tubing with brazed water-cooling channels and a transition section. The 45-mm-long transition section is used to extract the wakefield and to house a beam position monitor, a bellows assembly and a port to connect a vacuum pump. The CWA vacuum chamber module requires four to five brazing steps with filler metals of successively lower temperatures to maintain the integrity of previously brazed joints.
*A. Zholents et al., "A conceptual design of a Compact Wakefield Accelerator for a high repetition rate multi user Xray Free-Electron Laser Facility," in Proc. IPAC’18, Canada, 2018, pp. 1266~1268.
 
poster icon Poster WEPB05 [1.316 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB05  
About • paper received ※ 14 July 2021       paper accepted ※ 16 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB06 Mechanical Design of the Booster to Storage Ring Transfer (BTS) Line for APS Upgrade 279
 
  • J. Liu, M. Borland, T.K. Clute, J.S. Downey, M.S. Jaski, U. Wienands
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
APS Upgrade selected the horizontal injection scheme which requires exchanging the x and y emittances in the BTS transport line through a series of six skew quadrupoles, as well as matching the beam parameters to the APS Upgrade storage ring through two dipoles and a conventional pulsed septum. This paper presents the layout of this BTS line section in the storage ring tunnel and key components in this section including the mechanical design of dipole magnet, quadrupole and skew quad magnets, the vacuum system, the diagnostics system, and the supports. Finally, detailed mechanical design of this BTS line section in modules and some consideration for fabrication and installation are addressed.
 
poster icon Poster WEPB06 [1.133 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB06  
About • paper received ※ 26 July 2021       paper accepted ※ 19 October 2021       issue date ※ 03 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB07 Magnet Module Assembly for the APS Upgrade 283
 
  • K.J. Volin, R. Bechtold, A.K. Jain, W.G. Jansma, Z. Liu, J. Nudell, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357.
With APSU well into the procurement phase of the project, the APSU assembly team has completed a "DLMA Practice Assembly", comprising of the support system, and all magnets required to complete a module. The purpose of this test was to verify assembly and documentation procedures, ensure proper fit between mating components, and verify that alignment specifications can be met. The results of this exercise are presented. Though this test was completed on the Argonne site, work continues on building 981, the APSU offsite warehouse, where our first production plinths and girders have been shipped, and where production modules will be assembled. This space has been outfitted by Argonne contractors and APSU Assembly technicians with 1) 5 parallel DLM/FODO module assembly stations, each complete with a 3 tn. overhead crane, retractable cleanroom, staging tables, and tools, and 2) 2 QMQ module assembly stations each complete with a 5 tn. gantry crane, assembly support stands, staging tables, and tools. An overview of this production assembly space is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB07  
About • paper received ※ 07 September 2021       paper accepted ※ 29 October 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB08 Multibody Simulations with Reduced Order Flexible Bodies Obtained by FEA 286
 
  • P. Brumund, T. Dehaeze
    ESRF, Grenoble, France
  • T. Dehaeze
    PML, Liège, Belgium
 
  Tighter specifications in synchrotron instrumentation development force the design engineers more and more often to choose a mechatronics design approach. This includes actively controlled systems that need to be properly designed. The new Nano Active Stabilization System (NASS) for the ESRF beamline ID31 was designed with such an approach. We chose a multi-body design modelling approach for the development of the NASS end-station. Significance of such models depend strongly on its input and consideration of the right stiffness of the system’s components and subsystems. For that matter, we considered sub-components in the multi-body model as reduced order flexible bodies representing the component’s modal behaviour with reduced mass and stiffness matrices obtained from finite element analysis (FEA) models. These matrices were created from FEA models via modal reduction techniques, more specifically the component mode synthesis (CMS). This makes this design approach a combined multibody-FEA technique. We validated the technique with a test bench that confirmed the good modelling capabilities using reduced order flexible body models obtained from FEA for an amplified piezoelectric actuator (APA).  
poster icon Poster WEPB08 [1.486 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB08  
About • paper received ※ 16 July 2021       paper accepted ※ 27 September 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB09
An FEA Investigation of the Vibration Response of the BEATS Detector Stage  
 
  • T.F. Mokoena, A. Kaprolat, P. Van Vaerenbergh
    ESRF, Grenoble, France
  • M. Bhamjee, S.H. Connell
    University of Johannesburg, Johannesburg, South Africa
  • G. Iori
    SESAME, Allan, Jordan
 
  As for all Synchrotron Radiation based installations, floor vibrations lead to unreliable results if transmitted to sensible equipment like sample environment and detection systems. It is important to design the optical and experimental equipment of a beamline in a way to minimize the effect of the vibrations. This project investigates the design of the detector stage in SESAME’s tomography beamline BEATS by using random vibration analysis to determine the rigidity of the structure. The design analysis of the detector stage takes the approach of using an existing installation at beamline ID28 of the European Synchrotron Radiation Facility by measuring the power spectrum density of the floor on which the structure is mounted on as well as the response of the structure stage as it is subjected to an excitation from ambient floor noise. A finite element analysis numerical model was established and validated against the experimental data. Once the model is validated within acceptable range, the technique will be applied to the BEATS detector stage design by applying the floor power spectrum density of the SESAME synchrotron and calculating the response of the structure. It is assumed that the random vibration process in this case follows a Gaussian normal distribution. The response power spectrum density Root Mean Square value at the location of interest should be at least 6 times less than the pixel size of the camera that will be used in detector. For the ID28 case, the model was validated by comparing the natural frequency measured and the experimental output RMS value against the model output RMS value. The model natural frequencies deviated from the experimental results by 4.53% and the model RMS values deviated from the experimental results by 1.91%.  
poster icon Poster WEPB09 [0.846 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB10
Two Shielded End-Stations at MARS Beamline of SOLEIL Synchrotron: Specific Devices for the Highly Irradiating Materials Analysis  
 
  • P. Mandin, R. Boullon, R. Lauberton, D. Leterme, Y. Robert, N. jonquères
    CEA, DES-ISAS-DM2S, Université Paris-Saclay, Gif-sur-Yvette, France
  • J-L. Béchade, R. Guillou
    CEA, DES-ISAS-DMN, Paris-Saclay University, Gif-sur-Yvette, France
  • H. Hermange, M.O.J.Y. Hunault, D. Menut, J.B.P. Pruvost, P.L. Solari
    SOLEIL, Gif-sur-Yvette, France
  • S. Schlutig, P. Valenza
    CEA, DES-IRESNE-DEC, Université Paris-Saclay, Saint-Paul-Lez-Durance, France
 
  Funding: CEA / SOLEIL
Since the mid-2000s, the engineers and researchers of CEA and SOLEIL synchrotron facility have worked together to design a world unique beamline for the study of radioactive matter: MARS (Multi Analyses on Radioactive Samples Beamline)*. The facility works in the hard X-ray domain (between 3.0 and 35 keV) combining both X-ray spectroscopy and X-ray diffraction/scattering techniques on two end-stations: CX2 and CX3. MARS beamline is authorized by the ASN (French Nuclear Safety Authority) to analyze samples with radioactivities up to 18.5 GBq per sample for alpha and beta emitters and up to 2 GBq for gamma and neutron emitters. One of its main objectives is to be able to analyze these highly irradiating samples, such as spent nuclear reactor fuel or irradiated nuclear material (solid, liquid), to study their structural and chemical evolutions after irradiation. This article describes the components designed and realized with the major contribution of CEA to analyze such kind of samples: #1 air-tight sample holders; #2 positioning mechanical systems on the X-ray beam; #3 local analyzer devices; #4 two shieldings to safeguard users; #5 a mobile-shielded cask to transport samples.
*Sitaud, B. et al., H. Characterization of radioactive materials using the MARS beamline at the synchrotron SOLEIL. Journal of Nuclear Materials 425, 238-243 (2012).
 
poster icon Poster WEPB10 [2.225 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB11
Design of an Advance Detector Support to Allow High Quality GISAXS/GIWAXS Experiments on the MARS Beamline at SOLEIL  
 
  • D. Menut, Y.-M. Abiven, J.M. Dubuisson, C. Engblom, J.L. Giorgetta, H. Hermange, M. Sebdaoui, P.L. Solari
    SOLEIL, Gif-sur-Yvette, France
 
  The MARS beamline*, operating at SOLEIL since 2010, has been developed to provide researchers with advanced X-ray techniques to characterize nuclear materials. The diversity in users’ demands has driven the development of the most suitable detector support to accommodate novel experiments that have not been specified at the time of design. The choice complied with constraints related to the installation in a narrow experimental hutch along with easy transport and maintenance. The system consists of a long-range linear table (Ts) mounted on a wide angular (-1° ; +65°) Rx rotation; Rx can be moved off the beam axis (Tx) to align the detector with the transmitted/reflected beam. It accommodates for any detector by only changing the kinematic interface with Ts. It is worth remarking on the wide angular range with a potential concentration of mass at the end of the arm (payload : 55 kg). FEA was done to study its structural behavior. Performing movements with low SOC values not only puts constraints on the mechanics, but also on control system. As such, Delta Tau Powerbrick controller has been implemented. The design project is complete and built with commissioning work to be done.
*Sitaud, B., Solari, P. L., Schlutig, S., Llorens, I. & Hermange, H. Characterization of radioactive materials using the MARS beamline at the synchrotron SOLEIL. J. Nucl. Mater. 425, 238-243 (2012).
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB12 ForMAX Endstation - a Novel Design Combining Full-Field Tomography with Small- and Wide-Angle X-Ray Scattering 289
 
  • J.B. González Fernández, S.A. McDonald, K. Nygard, L.K. Roslund
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: The construction of the ForMAX beamline is funded by the Knut and Alice Wallenberg Foundation.
ForMAX is a new beamline at the MAX IV Laboratory for multi-scale structural characterization of hierarchical materials from nm to mm length scales with high temporal resolution. This is achieved by combining full-field microtomography with small- and wide-angle X-ray scattering (SWAXS) in a novel manner. The principal components of the endstation consist of two units of beam conditioning elements, a sample table, an evacuated flight tube and a detector gantry. The beam conditioning units include a diamond vacuum window, an attenuator system, a fast shutter, a slit collimation system, two sets of compound refractive lenses, three X-ray beam intensity monitors, a beam viewer and a telescopic vacuum tube. The sample table has been optimized with respect to flexibility and load capacity, while retaining sub-micron resolution of motion and high stability performance. The nine metre long and one metre diameter evacuated flight tube contains a motorised detector trolley, enabling the sample-detector position for small-angle X-ray scattering (SAXS) to be easily adjusted under vacuum conditions. Finally, a two metre high and two metre wide granite gantry permits independent and easy movement of the tomography microscope and wide-angle X-ray (WAXS) detector in and out of the X-ray beam. To facilitate propagation-based phase-contrast imaging and mounting of bulky sample environments, the gantry is mounted on motorized floor rails. All these characteristics will allow to combine multiple complementary techniques sequentially in the same experiment with fast efficient switching between setups. The ForMAX endstation is presently in the design and construction phase, with commissioning expected to commence early 2022.
 
poster icon Poster WEPB12 [1.955 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB12  
About • paper received ※ 16 July 2021       paper accepted ※ 16 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB13 Design and Commissioning of the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS 292
 
  • R.R. Geraldes, C.S.N.C. Bueno, L.G. Capovilla, D. Galante, L.C. Guedes, L.M. Kofukuda, G.N. Kontogiorgos, F.R. Lena, S.A.L. Luiz, G.B.Z.L. Moreno, I.T. Neckel, C.A. Perez, A.C. Piccino Neto, A.C. Pinto, C. Sato, A.P.S. Sotero, V.C. Teixeira, H.C.N. Tolentino, W.H. Wilendorf, J.L. da Silva
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
TARUMÃ is the sub-microprobe station of the CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) beamline at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). It has been designed to allow for simultaneous multi-analytical X-ray techniques, including diffraction, spectroscopy, fluorescence and luminescence and imaging, both in 2D and 3D. Covering the energy range from 2.05 to 15 keV, the fully-coherent monochromatic beam size varies from 550 to 120 nm after the achromatic KB (Kirkpatrick-Baez) focusing optics, granting a flux of up to 1e11ph/s/100mA at the probe for high-throughput experiments with flyscans. In addition to the multiple techniques available at TARUMÃ, the large working distance of 440 mm after the ultra-high vacuum (UHV) KB system allows for another key aspect of this station, namely, a broad range of decoupled and independent sample environments. Indeed, exchangeable modular setups outside vacuum allow for in situ, in operando, cryogenic and/or in vivo experiments, covering research areas in biology, chemistry, physics, geophysics, agriculture, environment and energy, to name a few. An extensive systemic approach, heavily based on precision engineering concepts and predictive design, has been adopted for first-time-right development, effectively achieving altogether: the alignment and stability requirements of the large KB mirrors with respect to the beam and to the sample*; and the nanometer-level positioning, flyscan, tomographic and setup modularity requirements of the samples. This work presents the overall station architecture, the key aspects of its main components, and the first commissioning results.
* G.B.Z.L. Moreno et al. "Exactly constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at the CARNAÚBA Beamline", presented at MEDSI’20, paper TUOB01, this conference.
 
poster icon Poster WEPB13 [2.936 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB13  
About • paper received ※ 25 July 2021       paper accepted ※ 28 September 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB15 A Novel Vacuum Chamber Design for the APS Upgrade of the 26-ID Nanoprobe 296
 
  • S.J. Bean, P.N. Amann, M. Bartlein, Z. Cai, T. Graber, M. Holt, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Used resources of the CNM and the APS, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by ANL under Contract No. DE-AC02-06CH11357.
An enhancement design of an existing 26-ID nanoprobe [1] instrument (NPI) at APS is being completed as part of work for the APS-Upgrade (APS-U) project. As part of this enhancement design, a new vacuum chamber geometry configuration has been implemented that balances the desired simultaneous x-ray measurement methods with accessibility and serviceability of the nanoprobe. The main enabling feature on the vacuum chamber is a slanted mid-level vacuum sealing plane. The new chamber design geometrically optimizes the ability to perform simultaneous diffraction, fluorescence and optical or laser pump probe measurements on the sample. A large diffraction door geometry is strategically placed near the sample for ease of access. The newly designed chamber can be readily serviced by removal of the upper chamber section, on which most larger instrument assemblies or beamline attachments are not interfaced. The mechanical design intent and geometry of this chamber concept is described in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB15  
About • paper received ※ 12 August 2021       paper accepted ※ 19 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB16 CFD Predictions of Water Flow Through Impellers of the ALBA Centrifugal Pumps and Their Aspiration Zone. An Investigation of Fluid Dynamics Effects on Cavitation Problems 299
 
  • A. González Romero
    ESEIAAT, Terrassa, Spain
  • J.J. Casas, C. Colldelram, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Currently, the ALBA refrigeration system pumps present cavitation when operating at their nominal regime. To alleviate this phenomenon temporarily until a definitive solution was found, the water flow was reduced to 67% of its nominal value. As this flow exchanges heat with the cooling water produced in an external cogeneration plant, modifying the working point of the pumps resulted in a reduction of the Accelerator cooling capacity. However, even at such low flow conditions, the flow has an anomalous oscillatory behaviour in the distributor of the aspiration zone, implying that the cause may be in a bad dimensioning of the manifold. This paper presents a study of Computational Fluid Dynamics (CFD) applied to the aspiration zones of the pumps, to investigate the effects of fluid dynamics on cavitation problems and understand what may be happening in the system. The need for such research arises from the urge to recover the accelerator cooling capacity and the constant pursuit for the improvement of the system. The geometries for this study include the general manifold in the aspiration zone and a simplified model of the pump impeller. The simulations have been carried out with the ANSYS-FLUENT software. Studies performed include considering the total water flow in nominal and under current operating conditions. In addition, the cases in which the flow is distributed through the manifold tubes in uniform and non-uniform ways have been treated separately. Pressure and velocity fields are analysed for various turbulence models. Finally, conclusions and recommendations to the problem are presented.  
poster icon Poster WEPB16 [0.794 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB16  
About • paper received ※ 27 July 2021       paper accepted ※ 28 September 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB17 A Fast Simulation Tool to Calculate Spectral Power Density Emitted by Wigglers and Short Insertion Devices 303
 
  • J. Reyes-Herrera, M. Sanchez del Rio
    ESRF, Grenoble, France
 
  The analysis of thermal stress of beamline components requires a comprehensive determination of the absorbed power profile. Consequently, accurate calculations of beam power density and its dependency on the photon energy are required. There exist precise tools to perform these calculations for undulator sources, like several methods available in the OASYS toolbox* considering, for example, the contribution of the different harmonics of the undulator radiation or using ray-tracing algorithms**. This is not the case for wiggler sources, in particular for short insertion devices that are used as source for the bending magnet beamlines in some upgraded storage rings like the ESRF-EBS. Wiggler radiation is incoherent and although it is possible the use of undulator methods for calculating it, this is very inefficient. In this work, we describe a tool that performs fast calculations of spectral power density from a wiggler source. The emission is calculated starting from a tabulated magnetic field and computes the power spatial and spectral density. It uses concepts inspired from Tanaka’s work***. It is implemented in a user-friendly widget in OASYS and can be connected to widgets to calculate absorbed and transmitted power density along the beamline components. The accuracy of the method is verified by calculating three examples and comparing the results with ray-tracing. The three insertion devices simulated are: the EBS-ESRF-3PW, the ESRF W150 (a high power wiggler) and the 3PW for the BEATS project at the SESAME synchrotron source.
*L. Rebuffi, M. Sanchez del Rio, Proc. SPIE 10388: 130080S (2017).
**L. Rebuffi et al., J Synchrotron Rad, 27, 1108-1120 (2020).
***T. Tanaka, H. Kitamura, AIP Conference Proceedings 705, 41 (2004).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB17  
About • paper received ※ 28 July 2021       paper accepted ※ 28 September 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)