JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for WEPA08: Investigating of EBW Process Weldment Connections Stresses in ILSF 100 MHz Cavity by Simufact. Welding Software

TY  - CONF
AU  - Moradi, V.
AU  - Adamian, A.
AU  - Arab, N.B.
ED  - Jaski, Yifei
ED  - Den Hartog, Patric
ED  - Jaje, Kelly
ED  - Schaa, Volker R.W.
TI  - Investigating of EBW Process Weldment Connections Stresses in ILSF 100 MHz Cavity by Simufact. Welding Software
J2  - Proc. of MEDSI2020, Chicago, IL, USA, 24-29 July 2021
CY  - Chicago, IL, USA
T2  - Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation
T3  - 11
LA  - english
AB  - The cavity is one of the main components of all accelerators, which is used to increase the energy level of charged particles (electrons, protons, etc.). The cavities increase the energy level of the charged particle by providing a suitable electric field to accelerate the charged particle. Here, information about electron beam welding analysis in 100 MHz cavities of ILSF design will be explained. According to studies performed in most accelerators in the world, connections in cavities are made by various methods such as explosive welding, brazing, electron beam welding, etc. Many articles on large cavities state that the connection of the side doors must be done by the electron beam welding process. However, in the present paper, the three-dimensional model of the cavity is imported into Simufact. Welding software after simplification and mesh process was done, and then the heat source of electron beam welding and other welding factors such as beam power, Gaussian distribution, etc. are applied in the software. The purpose of this study is the number of residual stresses during the EBW process in the 100 MHz cavity of ILSF.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 239
EP  - 242
KW  - cavity
KW  - electron
KW  - software
KW  - vacuum
KW  - simulation
DA  - 2021/10
PY  - 2021
SN  - 2673-5520
SN  - 978-3-95450-229-5
DO  - doi:10.18429/JACoW-MEDSI2020-WEPA08
UR  - https://jacow.org/medsi2020/papers/wepa08.pdf
ER  -