Author: Colldelram, C.
Paper Title Page
MOOB02 ALBA BL20 New Monochromator Design 14
 
  • A. Crisol, F. Bisti, C. Colldelram, M.L. Llonch, B. Molas, R. Monge, J. Nicolás, L. Nikitina, M. Quispe, L. Ribó, M. Tallarida
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  LOREA beamline (BL20) at ALBA Synchrotron is a new soft X-Ray beamline dedicated to investigate electronic structure of solids by means ARPES technique. Optical design has been developed in-house so as most of beamline core opto-mechanics like Monochromator. The design made for LOREA is based on a Hettrick-Underwood grating type that operates without entrance slit. Experience cumulated over years allowed to face the challenge of designing and building UHV Monochromator. The large energy range of LOREA (10-100 eV) requires a device with 3 mirrors and 4 gratings with variable line spacing to reduce aberrations. Monochromator most important part, gratings system, has been carefully designed to be isolated from external disturbances as cooling water, and at the same time having high performances. Deep analytical calculations and FEA simulations have been carried out, as well as testing prototypes. The most innovative part of Monochromator is gratings cooling with no vacuum guards or double piping that are well-known source of troubles. Heat load is removed by copper straps in contact with a temperature controller device connected to fixed water lines. In addition, motion mechanics and services (cabling, cooling) are independent systems. Designs involved give high stability (resonance modes over 60Hz) and angular resolution below 0.1 µrad over 11° range. On mirrors side, it has been used gonio mechanics from MIRAS* plus an eutectic InGa interface between cooling and optics to decouple them. Grating and mirror holders are fully removable from main mechanics to be able to assembled at lab measuring to achieve the best fit. Instrument has been already assembled and motions characterization or stability measurements are giving expected results matching with specifications.
* L. Ribó et al., "MECHANICAL DESIGN OF MIRAS, INFRARED MICROSPECTROSCOPY BEAM LINE AT ALBA SYNCHROTRON", presented at MEDSI’16, Barcelona, Spain, September 2016, doi:10.18429/JACoW-MEDSI2016-FRAA03
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides MOOB02 [3.249 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOOB02  
About • paper received ※ 28 July 2021       paper accepted ※ 01 September 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB01
The LEAPS-INNOV 5.2 Interferometers Based Online Metrology Development Program  
 
  • P. Marion
    ESRF, Grenoble, France
  • Y.-M. Abiven
    SOLEIL, Gif-sur-Yvette, France
  • C. Colldelram
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  As part of the LEAPS*-INNOV** pilot project, Task 5.2 is dedicated to interferometers based online metrology developments applied to photon science instrumentation. One of the main objectives of Task 5.2 is to explore and develop the possibilities offered by interferometers (in particular fiber connected systems) to measure the sample position and its motions during typical synchrotron experiments. This four year program started in April 2021, with the participation to Task 5.2 of ALBA-CELLS, ESRF, HZB, PTB and SOLEIL. The objective of the poster is diffuse information on Task 5.2 current plans and to gather information on existing / on-going works and possible collaborations in the field of interferometers based metrology. *LEAPS: The League of European Accelerator-Based Photon Sources **LEAPS-INNOV is a pilot project submitted in reply to the INFRAINNOV-04-2020 European Union call for the implementation of open innovation and new strategies and tools for partnership with industry within the photon science community. It involves in particular the European synchrotron radiation light sources and free electron laser large-scale research infrastructures.  
poster icon Poster TUPB01 [0.714 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB05 Investigation of Thermal Instabilities in the ALBA Cooling System, Based on Numerical Simulations and Experimental Measurements 153
 
  • F. Hernández
    ESEIAAT, Terrassa, Spain
  • E. Ayas, J.J. Casas, C. Colldelram, Ll. Fuentes, J. Iglesias, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  This paper presents an investigation into the thermal instability problems that currently affect the ALBA Cooling System. During these periods of instabilities, which occur for a few hours every week of operation, there are deviations up to +1.5 °C, concerning the nominal temperature of 23 ± 0.2 °C in the four rings of ALBA: Service Area, Booster, Storage and Experimental Hall. This problem has a direct impact on the quality of the beam of the Accelerator. Previous studies have preliminarily concluded that the causes of this problem are due to (1) thermohydraulic anomalies in the operation of the external cogeneration plant, which supplies cold water to ALBA, and (2) cavitation problems in the pumping system (the water mass flow has been reduced to 67% of its nominal value to temporarily mitigate the cavitation). In order to confirm these hypotheses and propose solutions to the problem, an investigation has been developed making use of one-dimensional thermohydraulic simulations, performing Computational Fluid Dynamic (CFD) studies, statistical evaluations of data taken from our control system, and systematic flow measurements in critical areas, with ultrasonic flowmeters. As a result of this research, a set of solutions and recommendations are finally proposed to solve this problem.  
slides icon Slides TUPB05 [2.933 MB]  
poster icon Poster TUPB05 [2.401 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB05  
About • paper received ※ 22 July 2021       paper accepted ※ 05 November 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB12 Assessment of the Corrosion of Copper Components in the Water Cooling System of ALBA Synchrotron Light Source; Presentation of a Proposal to Mitigate the Corrosion Rate of Copper 171
 
  • M. Quispe, E. Ayas, J.J. Casas, C. Colldelram, Ll. Fuentes, J.C. Giraldo, J. Iglesias, M. Pont
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J. Buxadera, M. Punset
    Technical University of Catalonia, The Biomaterials, Biomechanics and Tissue Engineering, Barcelona, Spain
 
  This paper presents the most recent results on the corrosion of copper components in ALBA water cooling system. The studies have been carried out using a variety of techniques: Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). Representative samples of the Accelerator Facility were examined: Storage Ring Absorbers, Front End Masks, Radio Frequency Cavity Pipes, Experimental Line Mask, Radio Frequency Plant Pipes at Service Area and Booster Quadrupole. The studies show the presence of intergranular, pitting and generalized corrosion. The presence of copper oxide is confirmed, as well as other elements such as Aluminum, Carbon, Sulfur, Silver, Calcium, Silicon, Titanium and Iron in some regions of the samples. Likewise, other elements from circulating water such as Potassium and Chlorine have also been detected. The depth of pitting corrosion is less than 119.4 um for the samples studied, after 10 years of operation. To minimize the corrosion problem, an upgrade of the ALBA cooling system is under study. The objective is to reduce the current corrosion rate by a conservative factor of 5. This change is possible by modifying the characteristics of the cooling water, reducing the dissolved oxygen content to values below 10 ppb and increasing the pH above 7.5. Technical aspects of this upgrade are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB12  
About • paper received ※ 23 July 2021       paper accepted ※ 16 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA07 The Fizeau System Instrument at ALBA Optics Laboratory 235
 
  • L.R.M. Ribó, D. Alloza, C. Colldelram, J. Nicolás, I. Šics
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA optics laboratory has recently acquired a new Zygo Verifire HD Fizeau interferometer. The instrument has been integrated into a positioning stage to allow stitching of long x-ray optical elements. The mechanical set up, with four axes, allows for automatic positioning and alignment of the interferometer aperture to the surface under test. The longitudinal movement allows for scan of X-ray mirrors up to 1500 m long. The positioning platform includes two angles, roll and yaw, and two translations, vertical and longitudinal translations. The longitudinal translation is a custom designed linear stage. The yaw rotation is based on a sine arm mechanism. The vertical and roll motions are combined in a single stage, closely integrated around the main linear stage. The system reaches repeatabilities better than 1 µm or 1 µrad for all axes. The system is mounted on top of a vibration isolated bench in the clean room of the laboratory. The control software of the instrument allow direct control of every individual axis, and allows selecting the center of rotation for both roll and yaw. The system includes inclinometers and autocollimators to control the relative orientation between the interferometer and the mirror under test. The system is integrated to the software of the interferometer, and includes features for automatic alignment of the interferometer to the mirror, or for automatic stitching acquisition, with selectable parameters. The system allows for full three-dimensional characterization of the optical surface of mirrors and gratings, and provides height map reconstructions with accuracy in the order of 1 nm, for flat or curved surfaces with lengths up to 1500 mm.  
poster icon Poster WEPA07 [2.785 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA07  
About • paper received ※ 29 July 2021       paper accepted ※ 21 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA11 Design of Monochromatic and White Beam Fluorescence Screen Monitors for XAIRA Beamline at the ALBA Synchrotron 249
 
  • J.M. Álvarez, C. Colldelram, N González, J. Juanhuix, J. Nicolás, I. Šics
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  XAIRA, the hard X-ray microfocus beamline at ALBA, includes three monochromatic fluorescence screens and one water cooled white beam monitor in its layout, mounting respectively YAG:Ce and polycrystalline CVD diamond as scintillator screens. All monitors share the same design scheme, with a re-entrant viewport for the visualization system that allows reducing the working distance, as required for high magnification imaging. The scintillator screen assembly is held by the same CF63 flange, making the whole system very compact and stable. The re-entrant flange is driven by a stepper motor actuated linear stage that positions or retracts the screen with respect to the beam path. To cope with high power density (18, 6 W/m2) on the white beam monitor 100 µm-thick diamond screen, an InGa-based cooling system has been developed. The general design of the new fluorescence screens, to be used also in other ALBA’s upcoming beamlines, with particular detail on the water-cooled white beam monitor, is described here.  
poster icon Poster WEPA11 [0.913 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA11  
About • paper received ※ 25 July 2021       paper accepted ※ 19 October 2021       issue date ※ 04 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA12 X-Ray Facility for the Characterization of the ATHENA Mirror Modules at the ALBA Synchrotron 252
 
  • A. Carballedo, J.J. Casas, C. Colldelram, G. Cuní, D. Heinis, J. Marcos, O. Matilla, J. Nicolás, A. Sánchez, N. Valls Vidal
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • N. Barrière, M.J. Collon, G. Vacanti
    Cosine Measurement Systems, Warmond, The Netherlands
  • M. Bavdaz, I. Ferreira
    ESA-ESTEC, Noordwijk, The Netherlands
  • E. Handick, M. Krumrey, P. Mueller
    PTB, Berlin, Germany
 
  MINERVA is a new X-ray facility under construction at the ALBA synchrotron specially designed to support the development of the ATHENA (Advanced Telescope for High Energy Astrophysics) mission. The beamline design is originally based on the monochromatic pencil beam XPBF 2.0 from the Physikalisch-Technische Bundesanstalt (PTB), at BESSY II already in use at this effect. MINERVA will host the necessary metrology equipment to integrate the stacks produced by the cosine company in a mirror module (MM) and characterize their optical performances. From the opto-mechanical point of view, the beamline is made up of three main subsystems. First of all, a water-cooled multilayer toroidal mirror based on a high precision mechanical goniometer, then a sample manipulator constituted by a combination of linear stages and in-vacuum hexapod and finally an X-ray detector which trajectory follows a cylinder of about 12 m radius away from the MM. MINERVA is funded by the European Space Agency (ESA) and the Spanish Ministry of Science and Innovation. MINERVA is today under construction and will be completed to operate in 2022.  
poster icon Poster WEPA12 [1.175 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA12  
About • paper received ※ 21 July 2021       paper accepted ※ 19 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA14 All Applications of the ALBA Skin Concept 259
 
  • A. Crisol, A. Carballedo, C. Colldelram, N González, J. Juanhuix, J. Nicolás, L.R.M. Ribó, C. Ruget
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L.W.S. Adamson
    ASCo, Clayton, Victoria, Australia
  • J.B. González Fernández
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E.R. Jane
    FMB Oxford, Oxford, United Kingdom
 
  During the ALBA design phase, the protein macromolecular protein crystallography beamline, XALOC, required several in-house developments. The major part of these designs was at the end station where the necessity of customization is always much higher. The most relevant of these instruments was the beam conditioning elements table [1]. This accurate stage, which supports the diffractometer as well, includes the four movements required to align the components to the nominal beam as well as position the diffractometer. This design compacts, especially the vertical and pitch movements, both in a single stage, with a couple of stages for all four excursions. The solution maximise the stiffness and preserves at the same time the resolution close to 0.1µm while being able to withstand a half tone of payload. Thanks this compactness and performances this design concept, the vertical and pitch combined stage, was not only applied at XALOC for its diffractometer and detector table, but it has been widely adapted at several ALBA beamlines: at NCD-SWEET [2] as a detector table, a beam conditioning elements table [3] and sample table, at MSPD beamline as the KB table, at NOTOS beamline as metrology table, and also at the new ESA MINERVA beamline [4] for their sample mirror modules positioning. Beamlines have not been the only beneficiaries of this design, also different kind of instrumentation like an hall probe measuring bench [5], and even a stitching platform for the ALBA optics laboratory [6]. Moreover, the concept has outreach ALBA and has been adopted also at other facilities worldwide, synchrotrons and also scientific instrumentation suppliers around Europe. This poster presents most of the applications of the skin concept and their variations and main measured performances.  
poster icon Poster WEPA14 [2.221 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA14  
About • paper received ※ 29 July 2021       paper accepted ※ 22 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB16 CFD Predictions of Water Flow Through Impellers of the ALBA Centrifugal Pumps and Their Aspiration Zone. An Investigation of Fluid Dynamics Effects on Cavitation Problems 299
 
  • A. González Romero
    ESEIAAT, Terrassa, Spain
  • J.J. Casas, C. Colldelram, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Currently, the ALBA refrigeration system pumps present cavitation when operating at their nominal regime. To alleviate this phenomenon temporarily until a definitive solution was found, the water flow was reduced to 67% of its nominal value. As this flow exchanges heat with the cooling water produced in an external cogeneration plant, modifying the working point of the pumps resulted in a reduction of the Accelerator cooling capacity. However, even at such low flow conditions, the flow has an anomalous oscillatory behaviour in the distributor of the aspiration zone, implying that the cause may be in a bad dimensioning of the manifold. This paper presents a study of Computational Fluid Dynamics (CFD) applied to the aspiration zones of the pumps, to investigate the effects of fluid dynamics on cavitation problems and understand what may be happening in the system. The need for such research arises from the urge to recover the accelerator cooling capacity and the constant pursuit for the improvement of the system. The geometries for this study include the general manifold in the aspiration zone and a simplified model of the pump impeller. The simulations have been carried out with the ANSYS-FLUENT software. Studies performed include considering the total water flow in nominal and under current operating conditions. In addition, the cases in which the flow is distributed through the manifold tubes in uniform and non-uniform ways have been treated separately. Pressure and velocity fields are analysed for various turbulence models. Finally, conclusions and recommendations to the problem are presented.  
poster icon Poster WEPB16 [0.794 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB16  
About • paper received ※ 27 July 2021       paper accepted ※ 28 September 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)