Author: Dehaeze, T.
Paper Title Page
TUIO02 Mechatronics Approach for the Development of a Nano-Active-Stabilization-System 93
 
  • T. Dehaeze, J. Bonnefoy
    ESRF, Grenoble, France
  • C.G.R.L. Collette
    ULB, Bruxelles, Belgium
 
  Funding: This research benefited from a FRIA grant from the French Community of Belgium.
With the growing number of fourth generation light sources, there is an increased need of fast positioning end-stations with nanometric precision. Such systems are usually including dedicated control strategies, and many factors may limit their performances. In order to design such complex systems in a predictive way, a mechatronic design approach also known as "model based design", may be utilized. In this paper, we present how this mechatronic design approach was used for the development of a nano-hexapod for the ESRF ID31 beamline. The chosen design approach consists of using models of the mechatronic system (including sensors, actuators and control strategies) to predict its behavior. Based on this behavior and closed-loop simulations, the elements that are limiting the performances can be identified and re-designed accordingly. This allows to make adequate choices concerning the design of the nano-hexapod and the overall mechatronic architecture early in the project and save precious time and resources. Several test benches were used to validate the models and to gain confidence on the predictability of the final system’s performances. Measured nano-hexapod’s dynamics was shown to be in very good agreement with the models. Further tests should be done in order to confirm that the performances of the system match the predicted one. The presented development approach is foreseen to be applied more frequently to future mechatronic system design at the ESRF.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides TUIO02 [12.432 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUIO02  
About • paper received ※ 26 July 2021       paper accepted ※ 17 September 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB08 Multibody Simulations with Reduced Order Flexible Bodies Obtained by FEA 286
 
  • P. Brumund, T. Dehaeze
    ESRF, Grenoble, France
  • T. Dehaeze
    PML, Liège, Belgium
 
  Tighter specifications in synchrotron instrumentation development force the design engineers more and more often to choose a mechatronics design approach. This includes actively controlled systems that need to be properly designed. The new Nano Active Stabilization System (NASS) for the ESRF beamline ID31 was designed with such an approach. We chose a multi-body design modelling approach for the development of the NASS end-station. Significance of such models depend strongly on its input and consideration of the right stiffness of the system’s components and subsystems. For that matter, we considered sub-components in the multi-body model as reduced order flexible bodies representing the component’s modal behaviour with reduced mass and stiffness matrices obtained from finite element analysis (FEA) models. These matrices were created from FEA models via modal reduction techniques, more specifically the component mode synthesis (CMS). This makes this design approach a combined multibody-FEA technique. We validated the technique with a test bench that confirmed the good modelling capabilities using reduced order flexible body models obtained from FEA for an amplified piezoelectric actuator (APA).  
poster icon Poster WEPB08 [1.486 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB08  
About • paper received ※ 16 July 2021       paper accepted ※ 27 September 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)