Author: Dugan, M.
Paper Title Page
TUPB15 Fabrication of the Transition Section of a Corrugated Wakefield Accelerator via Laser Micromachining 175
  • P. Bado, M. Dugan, A.A. Said
    Translume, Inc., Ann Arbor, Michigan, USA
  • A.E. Siy
    UW-Madison, Madison, Wisconsin, USA
  • K.J. Suthar, A. Zholents
    ANL, Lemont, Illinois, USA
  Funding: This manuscript is based upon work supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357
A cylindrical, corrugated wakefield accelerating (CWA) structure is being designed to facilitate sub-terahertz Cerenkov radiation produced by an electron bunch propagating in a waveguided structure comprising accelerating sections and transition sections*. The accelerating structure consists of several copper-based 50-cm long sections of internally corrugated tubes with 2-mm inner-diameter. These sections are coupled together using transition sections, which are also copper-based. The transition section has a main body diameter ranging from 2mm to 3.2mm and its length is about 14mm. Two sets of four orthogonal waveguides radiate from the central body. Beside their mechanical coupling function, these transition sections provide for periodic monitoring of the centering of the electron bunch, and for removal of unwanted higher-order EM modes. The fabrication of these transition sections is presented. The fabrication process is based on the use of a sacrificial fused silica glass mandrel, whose body corresponds to the inner volume of the copper element. This fused silica mandrel is subsequently electroplated. The micro-fabrication of a prototype of the transition section is underway. Modelling of various fabrication errors was undertaken to understand their effect and to determine tolerances. Source of machining imperfections are reviewed and their impact compared to the modelling results.
*A. Zholents et al., "A conceptual design of a Compact Wakefield Accelerator for a high repetition rate multi user Xray Free-Electron Laser Facility," in Proc. 9th Int.l Particle Accel. Conf., 2018
DOI • reference for this paper ※  
About • paper received ※ 27 July 2021       paper accepted ※ 19 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)