Author: Iglesias, J.
Paper Title Page
TUPB05 Investigation of Thermal Instabilities in the ALBA Cooling System, Based on Numerical Simulations and Experimental Measurements 153
 
  • F. Hernández
    ESEIAAT, Terrassa, Spain
  • E. Ayas, J.J. Casas, C. Colldelram, Ll. Fuentes, J. Iglesias, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  This paper presents an investigation into the thermal instability problems that currently affect the ALBA Cooling System. During these periods of instabilities, which occur for a few hours every week of operation, there are deviations up to +1.5 °C, concerning the nominal temperature of 23 ± 0.2 °C in the four rings of ALBA: Service Area, Booster, Storage and Experimental Hall. This problem has a direct impact on the quality of the beam of the Accelerator. Previous studies have preliminarily concluded that the causes of this problem are due to (1) thermohydraulic anomalies in the operation of the external cogeneration plant, which supplies cold water to ALBA, and (2) cavitation problems in the pumping system (the water mass flow has been reduced to 67% of its nominal value to temporarily mitigate the cavitation). In order to confirm these hypotheses and propose solutions to the problem, an investigation has been developed making use of one-dimensional thermohydraulic simulations, performing Computational Fluid Dynamic (CFD) studies, statistical evaluations of data taken from our control system, and systematic flow measurements in critical areas, with ultrasonic flowmeters. As a result of this research, a set of solutions and recommendations are finally proposed to solve this problem.  
slides icon Slides TUPB05 [2.933 MB]  
poster icon Poster TUPB05 [2.401 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB05  
About • paper received ※ 22 July 2021       paper accepted ※ 05 November 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB12 Assessment of the Corrosion of Copper Components in the Water Cooling System of ALBA Synchrotron Light Source; Presentation of a Proposal to Mitigate the Corrosion Rate of Copper 171
 
  • M. Quispe, E. Ayas, J.J. Casas, C. Colldelram, Ll. Fuentes, J.C. Giraldo, J. Iglesias, M. Pont
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J. Buxadera, M. Punset
    Technical University of Catalonia, The Biomaterials, Biomechanics and Tissue Engineering, Barcelona, Spain
 
  This paper presents the most recent results on the corrosion of copper components in ALBA water cooling system. The studies have been carried out using a variety of techniques: Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). Representative samples of the Accelerator Facility were examined: Storage Ring Absorbers, Front End Masks, Radio Frequency Cavity Pipes, Experimental Line Mask, Radio Frequency Plant Pipes at Service Area and Booster Quadrupole. The studies show the presence of intergranular, pitting and generalized corrosion. The presence of copper oxide is confirmed, as well as other elements such as Aluminum, Carbon, Sulfur, Silver, Calcium, Silicon, Titanium and Iron in some regions of the samples. Likewise, other elements from circulating water such as Potassium and Chlorine have also been detected. The depth of pitting corrosion is less than 119.4 um for the samples studied, after 10 years of operation. To minimize the corrosion problem, an upgrade of the ALBA cooling system is under study. The objective is to reduce the current corrosion rate by a conservative factor of 5. This change is possible by modifying the characteristics of the cooling water, reducing the dissolved oxygen content to values below 10 ppb and increasing the pH above 7.5. Technical aspects of this upgrade are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB12  
About • paper received ※ 23 July 2021       paper accepted ※ 16 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)