Author: Liu, Z.
Paper Title Page
MOPC16 Validation of APS-U Magnet Support Design Analysis and Prediction 89
 
  • Z. Liu, W.G. Jansma, J. Nudell, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APS-U) accelerator magnets have stringent stability requirement*. The project schedule and budget did not allow for full prototyping of the final design. Therefore, the engineers relied on accurate simulation to ensure that the design would meet the specifications. Recently, assembly and free-boundary vibration tests have been done on the first article of the upstream quadrupole Doublet, Longitudinal gradient dipole and Multipole module (DLM-A). The top surface flatness of the girder and the magnet alignment measurement results demonstrate the static positioning requirement of magnet-to-magnet is met. The free-boundary condition modal test results were used to validate the FEA analysis used in the DLM-A design. This validation then confirms the predicted performance of the magnet support system design. Mode shapes and corresponding frequencies from the FEA modal analysis agree with the experimental modal analysis within an acceptable tolerance. The validation approves not only the procedure for accurate modeling of magnet support system that APS-U has developed, but also provides confidence in predicting the accelerator performance.
*Advanced Photon Source. (2019). APS Upgrade Project Final Design Report (APSU-2.01-RPT-003). Retrieved from https://www.aps.anl.gov/APS-Upgrade/Documents
 
poster icon Poster MOPC16 [0.807 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC16  
About • paper received ※ 23 July 2021       paper accepted ※ 13 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB07 Magnet Module Assembly for the APS Upgrade 283
 
  • K.J. Volin, R. Bechtold, A.K. Jain, W.G. Jansma, Z. Liu, J. Nudell, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357.
With APSU well into the procurement phase of the project, the APSU assembly team has completed a "DLMA Practice Assembly", comprising of the support system, and all magnets required to complete a module. The purpose of this test was to verify assembly and documentation procedures, ensure proper fit between mating components, and verify that alignment specifications can be met. The results of this exercise are presented. Though this test was completed on the Argonne site, work continues on building 981, the APSU offsite warehouse, where our first production plinths and girders have been shipped, and where production modules will be assembled. This space has been outfitted by Argonne contractors and APSU Assembly technicians with 1) 5 parallel DLM/FODO module assembly stations, each complete with a 3 tn. overhead crane, retractable cleanroom, staging tables, and tools, and 2) 2 QMQ module assembly stations each complete with a 5 tn. gantry crane, assembly support stands, staging tables, and tools. An overview of this production assembly space is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB07  
About • paper received ※ 07 September 2021       paper accepted ※ 29 October 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC09 Temperature-Dependent Elastic Constants and Young’s Modulus of Silicon Single Crystal 324
 
  • Z. Liu
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Silicon crystals have been widely applied for x-ray monochromators. It is an anisotropic material with temperature dependent properties. Values of its thermal properties from cryogenic to high temperature are available in literature for expansion, conductivity, diffusivity, heat capacity, but neither elastic constants nor Young’s modulus. X-ray monochromators may be liquid-nitrogen cooled or water cooled. Finite Element Analysis (FEA) is commonly used to predict thermal performance of monochromators. The elastic constants and Young’s modulus over cryogenic and high temperature are now collected and derived from literature, with the purpose of assisting in providing accurate FEA predictions.
 
poster icon Poster WEPC09 [0.647 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC09  
About • paper received ※ 23 July 2021       paper accepted ※ 06 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)