Author: Qian, J.
Paper Title Page
TUOA01 Surface Twist Characterization and Compensation of an Elliptically Bent Hard X-Ray Mirror 99
  • Z. Qiao, J.W.J. Anton, L. Assoufid, S.P. Kearney, S.T. Mashrafi, J. Qian, X. Shi, D. Shu
    ANL, Lemont, Illinois, USA
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357
Deformable optics, including mechanically-bent and bimorph mirrors, are essential optical elements for X-ray beam dynamical focusing and wavefront correction. Existing mechanical bender technology often suffers from poor repeatability and does not include twist compensation. We recently developed an elliptically bent mirror based on a laminar flexure bending mechanism that yielded promising results*,**. In this work, the mirror surface twist was characterized using a Fizeau interferometer under different bending conditions. By applying a shimming correction, the surface twist was successfully reduced from 50 urad to 1.5 urad. The twist angle variation from no bending to the maximum bending is less than 0.5 urad. Our simulation results show that these numbers are significantly lower than the required values to ensure optimum optical performance. The study demonstrates the effectiveness of the twist compensation procedures and validates the mirror bender design parameters.
*Shu, D. et al., AIP Conference Proceedings. Vol. 2054. No. 1, 2019.
**Anton, Jayson WJ et al., Optomechanical Engineering 2019. Vol. 11100, 2019.
slides icon Slides TUOA01 [2.257 MB]  
DOI • reference for this paper ※  
About • paper received ※ 29 July 2021       paper accepted ※ 14 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)