Author: Saveri Silva, M.
Paper Title Page
MOPB02 Cryogenic Systems for Optical Elements Cooling at Sirius/LNLS 21
 
  • M. Saveri Silva, M.P. Calcanha, G.V. Claudiano, A.F.M. Fontoura, B.A. Francisco, L.M. Kofukuda, F.R. Lena, F. Meneau, G.B.Z.L. Moreno, G.L.M.P. Rodrigues, L. Sanfelici, H.C.N. Tolentino, L.M. Volpe
    LNLS, Campinas, Brazil
  • J.H. Řežende
    CNPEM, Campinas, SP, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Sirius, the Brazilian 4th-generation light source at the Brazilian Synchrotron Light Laboratory (LNLS), presents high-performance requirements in terms of preserving photon-beam quality, particularly regarding wavefront integrity and position stability. In this context, it is imperative that many silicon optical elements* be effectively cooled, such that temperatures and their control-related parameters can be precisely handled to the point in which thermal effects are acceptable concerning figure distortions and drifts at different timescales. For this class of precision equipment, the required performance can only be achieved with robust thermal management.** For this, relevant aspects related to the implementation of liquid nitrogen cooling systems need to be emphasized. Currently, two solutions are present at the first-phase beamlines, according to the component thermal load: (1) an in-house low-cost system for components under moderate loads (< 50 W), such as the mirror systems and the four-bounce monochromators, comprising a commercial cryostat connected to an instrumented vessel, whose level and pressure are controlled by the standard beamline automation system that can automatically feed it from a secondary service unit or a dedicated transfer line; (2) a commercial cryocooler for high-heat-load applications (50 - 3000 W), such as the double-crystal monochromators. This work presents the in-house solution: requirements, design aspects, operation range, as well as several discoveries and improvements deployed during the commissioning of the CATERETÊ and the CARNAÚBA beamlines, such as the prevention of ice formation, stabilization of both thermal load and flow-rate, and auto-filling parameters, among others.
*TOLENTINO. Innovative instruments (…) for the CARNAÚBA beamline at Sirius-LNLS. SRI (2018).
**VOLPE. Performance validation of the thermal model for optical components. Submit to MEDSI (2020)
 
poster icon Poster MOPB02 [2.364 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB02  
About • paper received ※ 25 July 2021       paper accepted ※ 13 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB04 Four-Bounce Crystal Monochromators for the Sirius/LNLS Beamlines 29
 
  • M. Saveri Silva, L.M. Kofukuda, S.A.L. Luiz, A.P.S. Sotero, H.C.N. Tolentino, L.M. Volpe, G.S. de Albuquerque
    LNLS, Campinas, Brazil
  • L. Martins dos Santos, J.H. Řežende
    CNPEM, Campinas, SP, Brazil
 
  Funding: Ministry of Science, Technology, and Innovation (MCTI)
Beamlines of new 4th-generation machines present high-performance requirements in terms of preserving beam quality, in particular wavefront integrity and position stability at micro and nanoprobe stations. It brings about numerous efforts to cope with engineering challenges comprehending high thermal load, cooling strategy, crystal manufacturing, vibration sources, alignment and coupled motion control. This contribution presents the design and performance of a four-bounce silicon-crystal monochromator for the Sirius beamlines at the Brazilian Synchrotron Light Source (LNLS), which is basically composed of two channel-cut crystals mounted on two goniometers that counter-rotate synchronously. The mechanical design ascertained the demands for the nanoprobe and coherent scattering beamlines - namely, CARNAÚBA and CATERETÊ - focusing on solutions to minimize misalignments among the parts, to grant high stiffness and to ensure that the thermal performance would not impair beam characteristics. Hence, all parts were carefully simulated, machined, and measured before assembling. This work details mechanical, thermal, diagnostics, and dynamic aspects of the instruments, from the design phase to their installation and initial commissioning at the beamlines.
 
poster icon Poster MOPB04 [3.518 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB04  
About • paper received ※ 25 July 2021       paper accepted ※ 30 August 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC11 The HD-DCM-Lite: A High-Dynamic DCM with Extended Scanning Capabilities for Sirius/LNLS Beamlines 203
 
  • A.V. Perna, H.O.C. Duarte, R.R. Geraldes, M.A.L. Moraes, M. Saveri Silva, M.S. Souza, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
After successfully designing, installing, and commissioning two units of the High-Dynamic Double-Crystal Monochromator (HD-DCM) at the Brazilian Synchrotron Light Laboratory (LNLS) - Sirius, two more units are now required. Since they demand only a smaller energy range (5 to 35 keV), the total gap stroke of the new instruments can be significantly reduced, creating an opportunity to adapt the existing design towards the so-called HD-DCM-Lite. Removing the large gap adjustment mechanism allows a reduction of the main inertia by a factor of 5, enabling the HD-DCM-Lite to deliver energy flyscans of hundreds of eV reaching 20 cycles per second while keeping fixed exit and the pitch stability in the range of 10 nrad RMS (1 Hz - 2.5 kHz). Hence, an unparallel bridge between slow step-scan DCMs and fast channel-cut monochromators is created. This work presents the in-house development of the HD-DCM-Lite, focusing on its mechanical design, discussions on the ultimate scanning constraints (rotary stage torque, voice-coil forces, interferometers and encoders readout speed limits and subdivisional errors), and thermal management.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster TUPC11 [3.155 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC11  
About • paper received ※ 28 July 2021       paper accepted ※ 16 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC14 Copper Braid Heat Conductors for Sirius Cryogenic X-Ray Optics 207
 
  • F.R. Lena, G.V. Claudiano, J.C. Corsaletti, R.R. Geraldes, D.Y. Kakizaki, R.L. Parise, M. Saveri Silva, M.S. Souza, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The low emittance and high photon flux beam present at the 4th-generation Sirius synchrotron light source beamlines result in high energy densities and high heat loads at some specific X-ray optics such as monochromators and white beam mirrors. This challenges the design of such systems since the introduction of thermal stresses may lead to optical surface deformation and beam degradation. Thus, to keep the systems within acceptable deformations some of the optical elements are cryogenically cooled. However, this poses the requirements of decoupling the thermal sinks (cryostats) from the optics and the mechanisms to maintain their desired degrees of freedom for alignment and dynamic operation. In this context we present the development of low-stiffness copper-braid-based heat conductors, summarizing the motivation and main aspects regarding their fabrication and application at the beamlines.
 
poster icon Poster TUPC14 [1.783 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC14  
About • paper received ※ 28 July 2021       paper accepted ※ 19 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)