Keyword: alignment
Paper Title Other Keywords Page
MOPB04 Four-Bounce Crystal Monochromators for the Sirius/LNLS Beamlines controls, cryogenics, synchrotron, experiment 29
 
  • M. Saveri Silva, L.M. Kofukuda, S.A.L. Luiz, A.P.S. Sotero, H.C.N. Tolentino, L.M. Volpe, G.S. de Albuquerque
    LNLS, Campinas, Brazil
  • L. Martins dos Santos, J.H. Řežende
    CNPEM, Campinas, SP, Brazil
 
  Funding: Ministry of Science, Technology, and Innovation (MCTI)
Beamlines of new 4th-generation machines present high-performance requirements in terms of preserving beam quality, in particular wavefront integrity and position stability at micro and nanoprobe stations. It brings about numerous efforts to cope with engineering challenges comprehending high thermal load, cooling strategy, crystal manufacturing, vibration sources, alignment and coupled motion control. This contribution presents the design and performance of a four-bounce silicon-crystal monochromator for the Sirius beamlines at the Brazilian Synchrotron Light Source (LNLS), which is basically composed of two channel-cut crystals mounted on two goniometers that counter-rotate synchronously. The mechanical design ascertained the demands for the nanoprobe and coherent scattering beamlines - namely, CARNAÚBA and CATERETÊ - focusing on solutions to minimize misalignments among the parts, to grant high stiffness and to ensure that the thermal performance would not impair beam characteristics. Hence, all parts were carefully simulated, machined, and measured before assembling. This work details mechanical, thermal, diagnostics, and dynamic aspects of the instruments, from the design phase to their installation and initial commissioning at the beamlines.
 
poster icon Poster MOPB04 [3.518 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB04  
About • paper received ※ 25 July 2021       paper accepted ※ 30 August 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB06 Installation and Commissioning of the Exactly-Constrained X-Ray Mirror Systems for Sirius/LNLS MMI, controls, cryogenics, optics 33
 
  • V.B. Zilli, C.S.N.C. Bueno, G.V. Claudiano, R.R. Geraldes, G.N. Kontogiorgos, F.R. Lena, S.A.L. Luiz, G.B.Z.L. Moreno, A.C. Pinto, G.L.M.P. Rodrigues, M.S. Souza, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Innovative exactly-constrained thermo-mechanical de-signs for beamline X-ray mirrors have been developed since 2017 at the 4th-generation Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). Due to the specific optical layouts of the beamlines, multiple systems cover a broad range of characteristics, including: power management from a few tens of mW to tens of W, via passive room-temperature operation, water cooling or indirect cryocooling using copper braids; mirror sizes ranging from 50 mm to more than 500 mm; mirrors with single or multiple optical stripes, with and without coat-ings; and internal mechanics with one or two degrees of freedom for optimized compromise between alignment features, with sub-100-nrad resolution, and high dynamic performance, with first resonances typically above 150 Hz. Currently, nearly a dozen of these in-house mirror systems is operational or in commissioning at 5 beam-lines at Sirius: MANACÁ, CATERETÊ, CARNAÚBA, EMA and IPÊ, whereas a few more are expected by the end of 2021 with the next set of the forthcoming beam-lines. This work highlights some of the design variations and describes in detail the workflow and the lessons learned in the installation of these systems, including: modal and motion validations, as well as cleaning, as-sembling, transportation, metrology, fiducialization, alignment, baking and cooling. Finally, commissioning results are shown for dynamic and thermal stabilities, and for optical performances.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster MOPB06 [1.959 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB06  
About • paper received ※ 12 August 2021       paper accepted ※ 13 October 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC05 Beamline Alignment and Characterization with an Autocollimator vacuum, synchrotron, photon, electron 62
 
  • M.V. Fisher, A.A. Khan, J.J. Knopp
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
An electronic autocollimator is a valuable tool that can assist in the alignment of optical beamline components such as mirrors and monochromators. It is also a powerful tool for in situ diagnoses of the mechanical behavior of such components. This can include the repeatability of crystals, gratings, and mirrors as they are rotated; the parasitic errors of these same optical elements as they are rotated and/or translated; and the repeatability and parasitic errors as bendable mirrors are actuated. The autocollimator can even be used to establish a secondary reference if such components require servicing. This paper will provide examples of such alignments, diagnoses, and references that have been made with an autocollimator on existing and recently commissioned beam-lines at the Advanced Photon Source (APS). In addition, this paper will discuss how this experience influenced the specifications and subsequent designs of the new primary high-heat-load mirror systems (PHHLMS) that are currently under fabrication for six of the APS Up-grade (APS-U) feature beamlines. Each mirror was specified to provide in situ line-of-sight access for an autocollimator to either the center of the mirror’s optical surface or to a smaller polished surface centered on the backside of each mirror substrate. This line of sight will be used for initial alignment of the mirror and will be available for in situ diagnoses if required in the future.
 
poster icon Poster MOPC05 [8.944 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC05  
About • paper received ※ 06 August 2021       paper accepted ※ 13 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC08 Compact X-Ray and Bremsstrahlung Collimator for LCLS-II FEL, photon, interface, vacuum 68
 
  • N.A. Boiadjieva, D.M. Fritz, T. Rabedeau
    SLAC, Menlo Park, California, USA
 
  Beam collimation is crucial to maintaining machine and personnel safety during LCLS-II operation. The high density of optics and beam transport components needed to steer the beam to multiple beam lines places a premium on compact collimator design. This presentation discusses a compact collimator consisting of an X-ray beam power collimator, a burn through monitor (BTM) designed to detect failure of the X-ray beam collimator, and a Bremsstrahlung collimator. The collimator body is a monolith machined from CuCrZr (C18150) that eliminates costly braze operations and reduces assembly time and complexity. Sintered high thermal conductivity SiC is employed as the X-ray absorber with design provisions incorporated to permit the inclusion of additional absorbers (e.g. diamond). The allowed FEL beam power is limited to 100W. Finite element analyses ensure that the power absorber remains in safe temperature and stress regimes under the maximum power loading and smallest expected beam dimensions. The beam power will be limited via credited controls placed on the electron beam. Beam containment requirements stipulate the inclusion of a monitor to detect burn through events owing to absorber failure. The BTM is a gas-filled, thin wall vessel which, if illuminated by the beam, will burn through and release the contained gas and trip pressure switches that initiate beam shutdown. The beam absorber and BTM shadow the Bremsstrahlung collimator shielding after appropriate propagation of manufacturing, assembly, and installation tolerances. Tooling is developed to minimize assembly complexity and ensure minimal alignment errors.  
poster icon Poster MOPC08 [0.950 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC08  
About • paper received ※ 21 July 2021       paper accepted ※ 13 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC12 A New Magnetic Measurement System for the Future Low Emittance NSLS-II Storage Ring controls, quadrupole, dipole, emittance 78
 
  • M. Musardo, T.M. Corwin, F.A. DePaola, L. Doom, R. Faussete, D.A. Harder, S.K. Sharma, T. Tanabe
    BNL, Upton, New York, USA
  • D. Assell, J. DiMarco
    Fermilab, Batavia, Illinois, USA
  • C.L. Doose, A.K. Jain
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by DOE under contract DE-SC0012704
A new magnetic measurement system is under construc-tion at BNL for accurate field harmonic measurements and fiducialization of magnets for a future upgrade of the NSLS- II storage ring. The entire storage ring is envi-sioned to be replaced with a new lattice concept, known as Complex Bend, which superimposes dipole and high-gradient quadrupole fields. The magnetic measurement system will use rotating wire and a PCB rotating coil specifically designed for small-aperture (< 15 mm) high gradient magnets. In this paper we describe in detail the mechanical design and the data acquisition hardware and software.
 
poster icon Poster MOPC12 [3.102 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC12  
About • paper received ※ 15 July 2021       paper accepted ※ 13 October 2021       issue date ※ 03 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC13 Recent Studies on the Vibration Response of NSLS-II Girder Support System damping, experiment, site, quadrupole 81
 
  • S.K. Sharma, C.J. Spataro
    BNL, Upton, New York, USA
 
  The designs of various girder support systems were reviewed recently in a MEDSI School tutorial*. A comparison of their horizontal transmissibility values in (2-100) Hz band showed that the NSLS-II girder support system had a lower horizontal transmissibility despite its first natural frequency being the lowest (~30 Hz). Detailed vibration tests and FE analyses have been performed to understand this anomaly and to assess the role of viscoelastic damping pads underneath the NSLS-II girders. The analyses were extended to include harmonic response to model viscoelastic properties and random vibrations to obtain relative motions between the magnets. The results of these new tests and FE analyses are discussed in this paper.
*S. Sharma, "Storage Ring Girder Issues for Low Emittance Storage Rings", Tutorial, Medsi School 2, Grenoble, France, October 2-25, 2019.
 
poster icon Poster MOPC13 [0.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC13  
About • paper received ※ 20 July 2021       paper accepted ※ 17 September 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC16 Validation of APS-U Magnet Support Design Analysis and Prediction photon, dipole, quadrupole, experiment 89
 
  • Z. Liu, W.G. Jansma, J. Nudell, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APS-U) accelerator magnets have stringent stability requirement*. The project schedule and budget did not allow for full prototyping of the final design. Therefore, the engineers relied on accurate simulation to ensure that the design would meet the specifications. Recently, assembly and free-boundary vibration tests have been done on the first article of the upstream quadrupole Doublet, Longitudinal gradient dipole and Multipole module (DLM-A). The top surface flatness of the girder and the magnet alignment measurement results demonstrate the static positioning requirement of magnet-to-magnet is met. The free-boundary condition modal test results were used to validate the FEA analysis used in the DLM-A design. This validation then confirms the predicted performance of the magnet support system design. Mode shapes and corresponding frequencies from the FEA modal analysis agree with the experimental modal analysis within an acceptable tolerance. The validation approves not only the procedure for accurate modeling of magnet support system that APS-U has developed, but also provides confidence in predicting the accelerator performance.
*Advanced Photon Source. (2019). APS Upgrade Project Final Design Report (APSU-2.01-RPT-003). Retrieved from https://www.aps.anl.gov/APS-Upgrade/Documents
 
poster icon Poster MOPC16 [0.807 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC16  
About • paper received ※ 23 July 2021       paper accepted ※ 13 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOB01 Exactly-constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at CARNAÚBA Beamline optics, experiment, MMI, focusing 111
 
  • G.B.Z.L. Moreno, C.S.N.C. Bueno, R.R. Geraldes, F.R. Lena, S.A.L. Luiz, E.O. Pereira, H.C.N. Tolentino, Y.R. Tonin, W.H. Wilendorf
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Next-generation nanoprobes, empowered by diffraction-limited storage rings, as Sirius/LNLS, present high-performance requirements aiming at high spatial resolution and throughput. For the focusing optics, this means assuring a small and non-astigmatic probe, high flux density, and remarkably high position stability, while also preserving beam wavefront. At stations further dedicated to spectromicroscopy and in-situ experiments, these requirements add up to having achromatic design and suitable working distance, respectively. In this way, Kirkpatrick-Baez (KB) mirrors have been chosen as the most appropriate solution for Sirius focusing optics. At TARUMÃ*, the first delivered nanoprobe at Sirius, the KB focuses the beam down to a 120 nm spot size (>8 keV) with a 440 mm working distance. This brought the requirements on the mirror’s angular stability to less than 10 nrad RMS, surface quality to single-digit nanometers, and alignment tolerances to the range of hundreds of nrad, which can be even tighter for other nanoprobes. Such specifications are particularly challenging regarding clamping, vibration, and thermal expansion budgets, even testing optical metrology limits during alignment and validation phases. The resulting KB mechanism is an opto-mechanical system with an exactly-constrained, deterministic design**, and suspension modes well above 250 Hz, sufficiently coupling optics to sample in the same 6-DoF base. It provides low-order aberration corrections by single degree-of-freedom alignment with piezo actuators, while higher order aberrations from clamping and thermal deformations are mitigated by gluing each mirror to flexure-based mounting frames. This contribution presents the design, assembly, and commissioning of the KB system at TARUMÃ as a reference case.
*Tolentino, H.C.N., et al. "TARUMÃ station for the CARNAÚBA beamline at SIRIUS/LNLS" SPIE 11112 19
**Geraldes, R.R., et al. "The Design of Exactly-constrained X-ray Mirror Systems for Sirius." MEDSI18
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides TUOB01 [5.780 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUOB01  
About • paper received ※ 25 July 2021       paper accepted ※ 17 September 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA10 Design of Magnet Girder System for Siam Photon Source II simulation, storage-ring, photon, synchrotron 138
 
  • O. Utke
    Synchrotron Light Research Institute (SLRI), Muang District, Thailand
  • S. Chaichuay, S. Klinkhieo, S. Pongampai, K. Sittisard, S. Srichan
    SLRI, Nakhon Ratchasima, Thailand
 
  The new Siam Photon Source II (SPS-II) storage ring is designed with a circumference of 327.502 m. It consists of 14 DTBA cell, where each cell requires 6 magnet girders. For the new storage ring of SPS II we developed a magnet girder system which uses wedgemounts for the precision alignment. The girder alignment uses a 3-2-1 alignment method and requires 3 wedgemounts to control Z direction, 2 wedgemounts to control Y-direction and 1 wedgemount for the X-direction. The magnet alignment is based on mechanical tolerances. Therefore, the girders top plate is prepared with precision surfaces with a flatness tolerance of 30 µm. During the development process of the girder system deformation and vibration FEA analysis were carried out and the results were used to improve the design regarding low deformation and high natural frequencies. In this paper FEA analysis results are presented as well as the design of the girder, pedestal and its wedgemount based alignment system.  
poster icon Poster TUPA10 [2.242 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA10  
About • paper received ※ 09 July 2021       paper accepted ※ 15 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA16 Design and Development of the Advanced Diffraction and Scattering Beamlines at the Australian Synchrotron detector, synchrotron, experiment, operation 150
 
  • B.J. McMahon, J.E. Auckett, M. Fenwick, R.B. Hogan, J.A. Kimpton, R. Lippi, S. Porsa
    AS - ANSTO, Clayton, Australia
 
  The ADS beamlines are the fifth and sixth beamlines being built within the Australian Synchrotron/ANSTO BRIGHT program The two beamlines (ADS-1 and ADS-2) will operate independently with the beam generated by a powerful super-conducting multipole wiggler (SCMPW). ADS-1 will have tunable collimating optics that will combine with a fixed exit double crystal Laue monochromator (DCLM) to provide white, pink and monochromatic beam (50-150 keV) to a large end-station located outside the main synchrotron building. ADS-1 will accommodate experiments using a variety of sample stages capable of positioning large and heavy samples (up to 300 kg). The second ADS beamline, ADS-2, will take a deflected beam from the main beam using a side-bounce monochromator (SBM) that produces three monochromatic energies from 45 keV - 90 keV. The SCMPW source for the beamline produces a beam of 45 kW at 4.5 T. The major optics of the beamline include a cryogenic SBM and a cryogenic DCLM, a transfocator and multilayer VFM. The high heat load on the front end and upstream monochromator represented key challenges for the beamline design. Innovative approaches to thermal management have been developed. The high radiation environment required additional safety protocols to be implemented for beamline operation. The primary beamline endstation utilises a large gantry robot to independently position up to 4 detectors in an envelope of up to 8x3x0.3 m with a positional repeatability of ± 0.01 mm. The large motion envelope gives users access to large Q-range and allows flexibility for users to utilise large bespoke sample environments. The ADS beamlines project encompasses design, procurement, build/installation and commissioning phases. The beamline will commence user operations in July 2023.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA16  
About • paper received ※ 29 July 2021       paper accepted ※ 15 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB08 High-Precision Synchrotron Kappa Diffractometer detector, synchrotron, synchrotron-radiation, electron 163
 
  • G. Olea, N. Huber, J. Zeeb
    HUBER Diffraktiontechnik GmbH&Co.KG, Rimsting, Germany
 
  A new research product aiming to work in a 3th generation synchrotron facility (PAL/PLS II) has been developed. Based on increased energy X-ray synchrotron radiation tool and well-known Kappa geometry device principle, the product is expected that will investigate atomic and molecular structures of materials at nanoscale level using several X-ray diffraction techniques. The Kappa diffractometer (K-Dm) machine is maintaining the common structural principle of its family, but working with an extreme precision and load, which is far of the competition. The main body is consisting from customized Kappa goniometer (KGm) device with vertical axis of rotation for high-precision sample (cryostat) manipulation, versatile detector arm (Da) for manipulating in horizontal plan different detectors (optics, slits, etc.) after X-ray beam is scattered and stable alignment base (Ab) for roughly adjusting the product around the X-ray beam. In addition, a XYZ cryo-carrier inside of the KGm is included for fine (submicron) sample adjustments. The kinematic, design and precision concepts applied, together with the obtained test results are all in detail presented.*
* HUBER Diffraction and Positioning GmbH&Co.KG, https://www.xhuber.com/en/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB08  
About • paper received ※ 16 July 2021       paper accepted ※ 16 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC09 Progress of Nano-Positioning Design for the Coherent Surface Scattering Imaging Instrument for the Advanced Photon Source Upgrade Project photon, detector, laser, scattering 196
 
  • J.W.J. Anton, M. Chu, Z. Jiang, S. Narayanan, D. Shu, J. Strzalka, J. Wang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
As part of the Advanced Photon Source Upgrade (APS-U) project, the Coherent Surface Scattering Imaging (CSSI) [1] instrument is currently being developed. One of the most important components of the CSSI instrument at the 9-ID beamline of the APS-U, the Kirkpatrick-Baez (K-B) mirror system, will focus hard X-rays to a diffrac-tion-limited size of 500 nanometers at a working distance of 550 mm. High angular stability (19 nrad for the hori-zontal mirror and 14 nrad for the vertical mirror) is speci-fied no just for the focused beamsize but, more important-ly, to ensure the beam stability at the detector position that is up to 24 m from the K-B mirrors. A large sample-to-detector distance (up to 23 m), one of the beamline’s unique features for achieving a sufficient coherent-imaging spatial oversampling, requires sample angular stability of 50 nrad. In CSSI scattering geometry, the vertically placed sample reflects X-rays in the horizontal direction at an extremely shallow angle. The design in-cludes two high-precision rotary stages for sample pitch (vertical axis) and yaw (horizontal axis). The current design of instrument’s nano-positioning stages [2] and metrology required to satisfy the stability and positioning requirements are discussed in this paper.
*T. Sun et al., Nat. Photonics 6, 586 (2012).
**D. Shu et al., this conference.
 
poster icon Poster TUPC09 [1.252 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC09  
About • paper received ※ 13 August 2021       paper accepted ※ 16 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC10 Modular Nanopositioning Flexure Stages Development for APS Upgrade K-B Mirror Nanofocusing Optics focusing, optics, photon, synchrotron 199
 
  • D. Shu, J.W.J. Anton, L. Assoufid, S.J. Bean, D. Capatina, V. De Andrade, E.M. Dufresne, T. Graber, R. Harder, D. Haskel, K. Jasionowski, S.P. Kearney, A.A. Khan, B. Lai, W. Liu, J. Maser, S.T. Mashrafi, G.K. Mistri, S. Narayanan, C.A. Preissner, M. Ramanathan, L. Rebuffi, R. Reininger, O.A. Schmidt, X. Shi, J.Z. Tischler, K.J. Wakefield, D. Walko, J. Wang, X. Zhang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Kirkpatrick and Baez (K-B) mirror-based nanofocusing optics* will be applied to many beamlines endstation instruments for the APS-Upgrade (APS-U) project. Precision nanopositioning stages with nanometer-scale linear positioning resolution and nanoradian-scale angular stability are needed as alignment apparatus for the K-B mirror hard X-ray nanofocusing optics. For instance, at the APS-U 19-ID In Situ Nanoprobe beamline endstation**, to maintain stability of a 20-nm focal spot on the sample, nanofocusing K-B mirror system with 5-nrad angular stability is required. Similar angular resolution and stability are also required for APS-U 9-ID CSSI***, APS-U 34-ID ATOMIC**** and other beamline endstation instruments. Modular nanopositioning flexure stages have been developed for the K-B mirror nanofocusing optics, which includes: linear vertical and horizontal flexure stages, tip-tilting flexure stages, and flexure mirror benders for bendable nanofocusing K-B mirrors, to overcome the performance limitations of precision ball-bearing-based or roller-bearing-based stage systems. The mechanical design and preliminary test results are described in this paper.
* Kirkpartrick and Baez, JOSA. 1948; 38(9): 766-773.
** S. Kearney et al., this conference.
*** J. Anton et al., this conference.
**** C. Preissner et al., this conference.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC10  
About • paper received ※ 02 August 2021       paper accepted ※ 21 October 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOA02 Design of Girders on the New Upgrade Lattice at Soleil dipole, simulation, lattice, operation 218
 
  • J.L. Giorgetta, A. Lestrade, A. Mary, K. Tavakoli
    SOLEIL, Gif-sur-Yvette, France
 
  The current girder set of SOLEIL features 4 girder types weighing from 1.85 t to 3 t, with a respective mass payload varying from 4.1 t to 8 t and lengths from 2.40 m to 4.80 m. The smaller size of magnets used for the present version of the SOLEIL upgrade allows a dramatic size and weight reduction of the magnet-girder assemblies. On the other hand, the number of magnets and girders has increased by a factor of 3, implying longer alignment and installation operations. Another constraint is due to the high compactness of the new lattice causing some limitations and access restrictions in the area between girders and tunnel wall. Several setups involving a number of girders from 116 to 212, various magnet layouts and binding systems have been studied. Dynamic and thermal performances have been evaluated by FEA analysis. This approach gives to accelerator physicists the performance of each solution, and thus a great versatility in the choice of the best setup in terms of dynamic and thermal stability. Alignment constraints, installation schedule reducing "dark time" period and economic considerations have also been taken into account during all the design phase.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides WEOA02 [4.386 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEOA02  
About • paper received ※ 07 August 2021       paper accepted ※ 19 October 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA07 The Fizeau System Instrument at ALBA Optics Laboratory GUI, optics, controls, ISOL 235
 
  • L.R.M. Ribó, D. Alloza, C. Colldelram, J. Nicolás, I. Šics
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA optics laboratory has recently acquired a new Zygo Verifire HD Fizeau interferometer. The instrument has been integrated into a positioning stage to allow stitching of long x-ray optical elements. The mechanical set up, with four axes, allows for automatic positioning and alignment of the interferometer aperture to the surface under test. The longitudinal movement allows for scan of X-ray mirrors up to 1500 m long. The positioning platform includes two angles, roll and yaw, and two translations, vertical and longitudinal translations. The longitudinal translation is a custom designed linear stage. The yaw rotation is based on a sine arm mechanism. The vertical and roll motions are combined in a single stage, closely integrated around the main linear stage. The system reaches repeatabilities better than 1 µm or 1 µrad for all axes. The system is mounted on top of a vibration isolated bench in the clean room of the laboratory. The control software of the instrument allow direct control of every individual axis, and allows selecting the center of rotation for both roll and yaw. The system includes inclinometers and autocollimators to control the relative orientation between the interferometer and the mirror under test. The system is integrated to the software of the interferometer, and includes features for automatic alignment of the interferometer to the mirror, or for automatic stitching acquisition, with selectable parameters. The system allows for full three-dimensional characterization of the optical surface of mirrors and gratings, and provides height map reconstructions with accuracy in the order of 1 nm, for flat or curved surfaces with lengths up to 1500 mm.  
poster icon Poster WEPA07 [2.785 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA07  
About • paper received ※ 29 July 2021       paper accepted ※ 21 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA11 Design of Monochromatic and White Beam Fluorescence Screen Monitors for XAIRA Beamline at the ALBA Synchrotron synchrotron, simulation, GUI, interface 249
 
  • J.M. Álvarez, C. Colldelram, N González, J. Juanhuix, J. Nicolás, I. Šics
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  XAIRA, the hard X-ray microfocus beamline at ALBA, includes three monochromatic fluorescence screens and one water cooled white beam monitor in its layout, mounting respectively YAG:Ce and polycrystalline CVD diamond as scintillator screens. All monitors share the same design scheme, with a re-entrant viewport for the visualization system that allows reducing the working distance, as required for high magnification imaging. The scintillator screen assembly is held by the same CF63 flange, making the whole system very compact and stable. The re-entrant flange is driven by a stepper motor actuated linear stage that positions or retracts the screen with respect to the beam path. To cope with high power density (18, 6 W/m2) on the white beam monitor 100 µm-thick diamond screen, an InGa-based cooling system has been developed. The general design of the new fluorescence screens, to be used also in other ALBA’s upcoming beamlines, with particular detail on the water-cooled white beam monitor, is described here.  
poster icon Poster WEPA11 [0.913 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA11  
About • paper received ※ 25 July 2021       paper accepted ※ 19 October 2021       issue date ※ 04 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA13 Design of a High-Precision Lifting System for the HL-LHC Heavy Components in the Interaction Region interface, radiation, interaction-region, cavity 255
 
  • F. Micolon, M. Sosin
    CERN, Meyrin, Switzerland
 
  Given the high radiation level and the tight alignment tolerances, the HL-LHC interaction region components are designed to be realigned remotely using motorized supporting jacks, as human interventions in these zones must be limited to the strict minimum. A position adjustment system will allow a vertical and horizontal displacement of each jack support by at least ±2.5 mm with a resolution of less than 10 µm. The weight of the supported elements, up to 170 kN and transverse loads reaching 30 kN, will have to be remotely moved by means of mechanical actuators. The system will be exposed to a cumulated radiation dose of up to 2 MGy during the 15 years of lifetime. To comply with these requirements, an extensive de-sign effort has been initiated at CERN to study the possible system layouts. This includes the prototyping of various solutions, studying subsystems through dedicated test setups and using simulations to obtain a clear under-standing of the mechanical principles at play. This paper reports on the work undertaken to design the high-precision lifting system, the various mechanical analysis carried out, and their main outcome. It reviews the proposed solutions and their expected alignment performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA13  
About • paper received ※ 15 July 2021       paper accepted ※ 19 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB03 Magnet Measurement Systems for the Advanced Photon Source Upgrade dipole, photon, quadrupole, multipole 269
 
  • S.J. Izzo, C.L. Doose, A.K. Jain, W.G. Jansma
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source-Upgrade (APS-U) project* is under construction and will incorporate a new Multi-Bend Achromat (MBA) lattice. With this design, the new storage ring will require over 1320 new magnets that are being produced under build-to-print contracts to several vendors across the globe. Magnetic measurements are needed to characterize and fiducialize all these magnets to ensure field quality and alignment requirements are met. Seven specialized test benches were designed and built to meet the measurement requirements. These measurement benches may be classified into two groups. The first group is the field quality measurement that includes the strength of the main field and higher harmonics. The multipole magnets are measured using four rotating coil benches, whereas the longitudinal gradient dipoles are mapped using a Hall probe system. The second group is fiducialization that locates the magnetic center of the magnet using a rotating wire and relates it to magnet fiducials and reference surfaces using a laser tracker. This information accompanies each magnet through the module assembly and final installation in the ring to ensure that the magnet is aligned within the allowable tolerance. To date, about 65% of all magnets needed for the storage ring have been measured and fiducialized. Mechanical design of the measurement benches will be presented.
*Advanced Photon Source. (2017). APS Upgrade Project Preliminary Design Review Report (APSU-2.01-RPT-002). Retrieved from https://www.aps.anl.gov/APS-Upgrade/Documents.
 
poster icon Poster WEPB03 [1.286 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB03  
About • paper received ※ 16 July 2021       paper accepted ※ 06 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB04 Design and Fabrication Challenges of Transition Section for the CWA Module GUI, vacuum, wakefield, Windows 273
 
  • S.H. Lee, W.G. Jansma, S. Sorsher, K.J. Suthar, E. Trakhtenberg, G.J. Waldschmidt, A. Zholents
    ANL, Lemont, Illinois, USA
  • A.E. Siy
    UW-Madison/PD, Madison, Wisconsin, USA
 
  Funding: Work support by Laboratory Directed Research and Development funding from Argonne National Lab, by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-06CH11357.
An effort to build Argonne’s Sub-THz AcceleRator (A-STAR) for a future multiuser x-ray free-electron laser facility proposed in [1] is underway at Argonne National Laboratory. The A-STAR machine will utilize a compact collinear wakefield accelerator (CWA) assembled in modules. To extract the wakefield and monitor beam position downstream of each module, a 45-mm-long transition section (TS) has been proposed and designed. This paper will discuss the design and fabrication chal-lenges for production of the TS.
*A. Zholents et al., "A conceptual design of a Compact Wakefield Accelerator for a high repetition rate multi user Xray Free-Electron Laser Facility," in Proc. IPAC’18, Canada, 2018, pp. 1266-1268.
 
poster icon Poster WEPB04 [2.052 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB04  
About • paper received ※ 14 July 2021       paper accepted ※ 16 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB07 Magnet Module Assembly for the APS Upgrade storage-ring, vacuum, site, photon 283
 
  • K.J. Volin, R. Bechtold, A.K. Jain, W.G. Jansma, Z. Liu, J. Nudell, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357.
With APSU well into the procurement phase of the project, the APSU assembly team has completed a "DLMA Practice Assembly", comprising of the support system, and all magnets required to complete a module. The purpose of this test was to verify assembly and documentation procedures, ensure proper fit between mating components, and verify that alignment specifications can be met. The results of this exercise are presented. Though this test was completed on the Argonne site, work continues on building 981, the APSU offsite warehouse, where our first production plinths and girders have been shipped, and where production modules will be assembled. This space has been outfitted by Argonne contractors and APSU Assembly technicians with 1) 5 parallel DLM/FODO module assembly stations, each complete with a 3 tn. overhead crane, retractable cleanroom, staging tables, and tools, and 2) 2 QMQ module assembly stations each complete with a 5 tn. gantry crane, assembly support stands, staging tables, and tools. An overview of this production assembly space is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB07  
About • paper received ※ 07 September 2021       paper accepted ※ 29 October 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC04 A Compact X-Ray Emission (mini-XES) Spectrometer at CLS - Design and Fabrication Methods detector, shielding, undulator, operation 314
 
  • T.W. Wysokinski, M. Button, B. Diaz Moreno, A.F.G. Leontowich
    CLS, Saskatoon, Saskatchewan, Canada
 
  Funding: The research described in this paper was performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation (CFI) and others agencies.
A compact X-ray emission spectrometer (mini-XES) has been designed and fabricated for use at the Brockhouse undulator beamline*. The mini-XES uses cylindrical von Hamos geometry tuned for Fe K-edge and uses a Pilatus 100 K area detector from Dectris**. It is based on a general design implemented at the APS***. The mini-XES design was developed to be as simple to fabricate and as easy to operate as possible. We tried to minimize the number of components, so there are only two main parts that create a chamber. Those two components are joined and aligned by a NW-80 flange. From the beginning, the design was trying to achieve no tools assembly, alignment, and operation. For lower precision alignment we decided to use the centering ring of the NW-80 flange which, together with two posts integrated with the chamber, provides an adequate method for joining the two parts of the enclosure. We use level vials for horizontal adjustment of the holder for the 10 crystals. For high precision alignment of the holder of the crystal, we used the Thorlab KC1/M kinematic mount, which had the adjustment screws accessible from outside of the chamber. The fabrication was done in-house using uPrint SE Plus 3D Printer****. The first tests of the spectrometer were completed in the Brockhouse wiggler beamline and were successful. Future improvements will aim to reduce the background scatter and better position the detector, to improve the fill. Now that the relatively inexpensive design was tested and tried, there is an option to upgrade it to 3D printed tungsten or steel version that would intrinsically provide the required shielding.
* B. Diaz et al., Rev. Sci. Instrum 85, 085104 (2014)
** https://www.dectris.com
*** B. A. Mattern et al., Rev. Sci. Instrum 83, 023901 (2012)
**** https://support.stratasys.com
 
poster icon Poster WEPC04 [0.809 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC04  
About • paper received ※ 09 July 2021       paper accepted ※ 17 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOA03 Alignment Strategies and First Results on Sirius Beamlines network, laser, synchrotron, vacuum 349
 
  • G.R. Rovigatti de Oliveira, H. Geraissate, R. Junqueira Leão
    LNLS, Campinas, Brazil
 
  The new Brazilian Synchrotron Light Source had its first friendly users late in 2019. During 2020, the first experimental stations were aligned and had the first beam successfully at the sample. The reference network of points used for the storage ring alignment was connected to an external network located in the experimental hall. Following this step, it was possible to extend these references to the hutches environment, where the beamlines components are installed. During the alignment of the first beamlines, a sequence of common tasks was performed, from the bluelining of the hutches footprints, to the components fine alignment. The position and orientation deviation of the main components will be presented for the Manacá, Cateretê, Ema, and Carnaúba beamlines. Two specific measurement strategies used for aligning special components will also be presented: (1) an indirect fiducialization procedure developed for most of the mirrors and their mechanisms using a mix of coordinate measuring machine and articulated measuring arm measurements, and (2) a multi-station setup arranged for the alignment of a 30 meters long detector carriage, using a mix of laser tracker, physical artifacts, and a rotary laser alignment system used as a straightness reference.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides THOA03 [2.805 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-THOA03  
About • paper received ※ 28 July 2021       paper accepted ※ 13 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)