Keyword: FEM
Paper Title Other Keywords Page
MOOB03 Bendable KB Type Focusing Mirrors Designed for TPS IR Beamline focusing, simulation, synchrotron-radiation, synchrotron 17
 
  • T.C. Tseng, H.S. Fung, H.C. Ho, K.H. Hsu, C.S. Huang, D.-G. Huang, C.K. Kuan, W.Y. Lai, C.J. Lin, S.Y. Perng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  A new IR beamline has been scheduled at TPS beam-line construction Phase III. The new beamline optical design is following the structure of the existed TLS IR beamline. However, the focusing mirrors has to be re-deign according to different situation. These KB type mirrors (HFM and VFM) are same thickness flat stain-less plates assembled with bending arms and bended with single motor each to fit quintic polynomial surface pro-files for focusing and also modifying arc source effect of bending section. For a same thickness plate in addition with the bending arms effect to form a desired polynomi-al surface profile, it demands specific width distribution. With the drawing method and FEM iteration simulation, the optimized surface polynomial equation and width distribution design of the mirror plates were defined. The detailed design sequences will be described in this paper.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides MOOB03 [5.530 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOOB03  
About • paper received ※ 29 July 2021       paper accepted ※ 01 September 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC03 Diamond Refractive Optics Fabrication by Laser Ablation and at-Wavelength Testing laser, optics, synchrotron, experiment 59
 
  • S.P. Antipov, E. Gomez
    Euclid TechLabs, Solon, Ohio, USA
  • R. Celestre, T. Roth
    ESRF, Grenoble, France
 
  Funding: SBIR grant #DE-SC0013129
The next generation light sources will require x-ray optical components capable of handling large instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Diamond being radiation hard, low Z material with outstanding thermal properties is proposed for front pre-focusing optics applications. Euclid Techlabs had been developing x-ray refractive diamond lens to meet this need. Standard deviation of lens shape error figure gradually was decreased to sub-micron values. Post-ablation polishing procedure yields ~ 10nm surface roughness. In this paper we will report on recent developments towards beamline-ready lens including packaging and compound refractive lens stacking. Diamond lens fabrication is done by femtosecond laser micromachining. We had been using this technology for customization of other beamline components. Several application cases will be highlighted in this presentation: diamond anvils, x-ray flow cells and in-beam mirrors.
 
poster icon Poster MOPC03 [1.754 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC03  
About • paper received ※ 21 July 2021       paper accepted ※ 01 October 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)