Keyword: MMI
Paper Title Other Keywords Page
MOPB03 Commissioning and Prospects of the High-Dynamic DCMs at Sirius/LNLS undulator, controls, operation, hardware 25
 
  • R.R. Geraldes, J.L. Brito Neto, R.M. Caliari, M.A.S. Eleoterio, S.A.L. Luiz, M.A.L. Moraes, A.V. Perna, M.S. Silva, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The High-Dynamic Double-Crystal Monochromator (HD-DCM)*,** is an opto-mechatronic system with unique architecture, and deep paradigm changes as compared to traditional beamline monochromators. Aiming at unmatching scanning possibilities and positioning stability in vertical-bounce DCMs, it has been developed since 2015 for hard X-ray beamlines at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). Two units are currently operational at the MANACA (macromolecular crystallography) and the EMA (extreme conditions) undulator beamlines, whereas a model for extended scanning capabilities in the energy range between 3.1 to 43 keV, the so-called HD-DCM-Lite, is in advanced development stage for two new beamlines, namely: QUATI (quick absorption spectroscopy), with a bending-magnet source; and SAPUCAIA (small-angle scattering), with an undulator source. In this work, online commissioning and operating results of the HD-DCMs are presented with emphasis on: the 10 nrad RMS (1 Hz - 2.5 kHz) pitch-parallelism performance; energy calibration; energy-dependent beam motion at sample; and flyscan with monochromator-undulator synchronization, which is a well-known control challenge at beamlines. To conclude, the Sirius HD-DCM family prospects, including the HD-DCM-Lite, are discussed.
*Geraldes, R. R., et al. "The New High-dynamics DCM for Sirius." Proc. of MEDSI 2016.
**Geraldes, R. R., et al. "The Status of the New High-Dynamic DCM for Sirius." Proc. of MEDSI 2018.
 
poster icon Poster MOPB03 [1.829 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB03  
About • paper received ※ 25 July 2021       paper accepted ※ 01 October 2021       issue date ※ 02 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB06 Installation and Commissioning of the Exactly-Constrained X-Ray Mirror Systems for Sirius/LNLS alignment, controls, cryogenics, optics 33
 
  • V.B. Zilli, C.S.N.C. Bueno, G.V. Claudiano, R.R. Geraldes, G.N. Kontogiorgos, F.R. Lena, S.A.L. Luiz, G.B.Z.L. Moreno, A.C. Pinto, G.L.M.P. Rodrigues, M.S. Souza, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Innovative exactly-constrained thermo-mechanical de-signs for beamline X-ray mirrors have been developed since 2017 at the 4th-generation Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). Due to the specific optical layouts of the beamlines, multiple systems cover a broad range of characteristics, including: power management from a few tens of mW to tens of W, via passive room-temperature operation, water cooling or indirect cryocooling using copper braids; mirror sizes ranging from 50 mm to more than 500 mm; mirrors with single or multiple optical stripes, with and without coat-ings; and internal mechanics with one or two degrees of freedom for optimized compromise between alignment features, with sub-100-nrad resolution, and high dynamic performance, with first resonances typically above 150 Hz. Currently, nearly a dozen of these in-house mirror systems is operational or in commissioning at 5 beam-lines at Sirius: MANACÁ, CATERETÊ, CARNAÚBA, EMA and IPÊ, whereas a few more are expected by the end of 2021 with the next set of the forthcoming beam-lines. This work highlights some of the design variations and describes in detail the workflow and the lessons learned in the installation of these systems, including: modal and motion validations, as well as cleaning, as-sembling, transportation, metrology, fiducialization, alignment, baking and cooling. Finally, commissioning results are shown for dynamic and thermal stabilities, and for optical performances.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster MOPB06 [1.959 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB06  
About • paper received ※ 12 August 2021       paper accepted ※ 13 October 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOA01 Surface Twist Characterization and Compensation of an Elliptically Bent Hard X-Ray Mirror optics, photon, simulation, focusing 99
 
  • Z. Qiao, J.W.J. Anton, L. Assoufid, S.P. Kearney, S.T. Mashrafi, J. Qian, X. Shi, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357
Deformable optics, including mechanically-bent and bimorph mirrors, are essential optical elements for X-ray beam dynamical focusing and wavefront correction. Existing mechanical bender technology often suffers from poor repeatability and does not include twist compensation. We recently developed an elliptically bent mirror based on a laminar flexure bending mechanism that yielded promising results*,**. In this work, the mirror surface twist was characterized using a Fizeau interferometer under different bending conditions. By applying a shimming correction, the surface twist was successfully reduced from 50 urad to 1.5 urad. The twist angle variation from no bending to the maximum bending is less than 0.5 urad. Our simulation results show that these numbers are significantly lower than the required values to ensure optimum optical performance. The study demonstrates the effectiveness of the twist compensation procedures and validates the mirror bender design parameters.
*Shu, D. et al., AIP Conference Proceedings. Vol. 2054. No. 1, 2019.
**Anton, Jayson WJ et al., Optomechanical Engineering 2019. Vol. 11100, 2019.
 
slides icon Slides TUOA01 [2.257 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUOA01  
About • paper received ※ 29 July 2021       paper accepted ※ 14 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOB01 Exactly-constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at CARNAÚBA Beamline alignment, optics, experiment, focusing 111
 
  • G.B.Z.L. Moreno, C.S.N.C. Bueno, R.R. Geraldes, F.R. Lena, S.A.L. Luiz, E.O. Pereira, H.C.N. Tolentino, Y.R. Tonin, W.H. Wilendorf
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Next-generation nanoprobes, empowered by diffraction-limited storage rings, as Sirius/LNLS, present high-performance requirements aiming at high spatial resolution and throughput. For the focusing optics, this means assuring a small and non-astigmatic probe, high flux density, and remarkably high position stability, while also preserving beam wavefront. At stations further dedicated to spectromicroscopy and in-situ experiments, these requirements add up to having achromatic design and suitable working distance, respectively. In this way, Kirkpatrick-Baez (KB) mirrors have been chosen as the most appropriate solution for Sirius focusing optics. At TARUMÃ*, the first delivered nanoprobe at Sirius, the KB focuses the beam down to a 120 nm spot size (>8 keV) with a 440 mm working distance. This brought the requirements on the mirror’s angular stability to less than 10 nrad RMS, surface quality to single-digit nanometers, and alignment tolerances to the range of hundreds of nrad, which can be even tighter for other nanoprobes. Such specifications are particularly challenging regarding clamping, vibration, and thermal expansion budgets, even testing optical metrology limits during alignment and validation phases. The resulting KB mechanism is an opto-mechanical system with an exactly-constrained, deterministic design**, and suspension modes well above 250 Hz, sufficiently coupling optics to sample in the same 6-DoF base. It provides low-order aberration corrections by single degree-of-freedom alignment with piezo actuators, while higher order aberrations from clamping and thermal deformations are mitigated by gluing each mirror to flexure-based mounting frames. This contribution presents the design, assembly, and commissioning of the KB system at TARUMÃ as a reference case.
*Tolentino, H.C.N., et al. "TARUMÃ station for the CARNAÚBA beamline at SIRIUS/LNLS" SPIE 11112 19
**Geraldes, R.R., et al. "The Design of Exactly-constrained X-ray Mirror Systems for Sirius." MEDSI18
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides TUOB01 [5.780 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUOB01  
About • paper received ※ 25 July 2021       paper accepted ※ 17 September 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC02 A Cryogenic Sample Environment for the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS controls, cryogenics, synchrotron, optics 306
 
  • F.R. Lena, C.S.N.C. Bueno, F.H. Cardoso, J.C. Carvalho, M.M. Donatti, R.R. Geraldes, L.M. Kofukuda, L.S. Perissinotto, E. Piragibe, C. Sato, H.C.N. Tolentino, W.H. Wilendorf
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology, and Innovation (MCTI)
TARUMÃ is the sub-microprobe station of CAR-NAÚBA (Coherent X-Ray Nanoprobe Beamline) at Sirius at the Brazilian Synchrotron Light Laboratory (LNLS). Covering the tender-to-hard energy range from 2.05 to 15 keV with achromatic fixed-shape optics, the fully coherent submicron focused beam can be used for multiple simultaneous advancedμand nanoscale X-ray techniques that include ptychography coherent diffraction imaging (ptycho-CDI), absorption spectroscopy (XAS), diffraction (XRD), fluorescence (XRF) and luminescence (XEOL). Among the broad range of materials of interest, studies of light elements present in soft tissues and other biological systems put TARUMÃ in a unique position in the Life and Environmental Sciences program at LNLS. Yet, to mitigate the detrimental effect of the high photon flux of the focused beam due to radiation damage, cryocooling may be required. Here we present the design and first results of a novel open-atmosphere cryogenic system for online sample conditioning down to 110 K. The high-stiffness and thermally-stable sample holder follows the predictive design approach based on precision engineering principles to preserve the nanometer-level positioning requirements, whereas a commercial nitrogen blower is used with a cold gas flow exhaustion system that has been developed in order to avoid unwanted cooling of surrounding parts and water condensation or icing.
 
poster icon Poster WEPC02 [2.172 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC02  
About • paper received ※ 29 July 2021       paper accepted ※ 17 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)