Keyword: optics
Paper Title Other Keywords Page
MOOB02 ALBA BL20 New Monochromator Design vacuum, GUI, ISOL, controls 14
 
  • A. Crisol, F. Bisti, C. Colldelram, M.L. Llonch, B. Molas, R. Monge, J. Nicolás, L. Nikitina, M. Quispe, L. Ribó, M. Tallarida
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  LOREA beamline (BL20) at ALBA Synchrotron is a new soft X-Ray beamline dedicated to investigate electronic structure of solids by means ARPES technique. Optical design has been developed in-house so as most of beamline core opto-mechanics like Monochromator. The design made for LOREA is based on a Hettrick-Underwood grating type that operates without entrance slit. Experience cumulated over years allowed to face the challenge of designing and building UHV Monochromator. The large energy range of LOREA (10-100 eV) requires a device with 3 mirrors and 4 gratings with variable line spacing to reduce aberrations. Monochromator most important part, gratings system, has been carefully designed to be isolated from external disturbances as cooling water, and at the same time having high performances. Deep analytical calculations and FEA simulations have been carried out, as well as testing prototypes. The most innovative part of Monochromator is gratings cooling with no vacuum guards or double piping that are well-known source of troubles. Heat load is removed by copper straps in contact with a temperature controller device connected to fixed water lines. In addition, motion mechanics and services (cabling, cooling) are independent systems. Designs involved give high stability (resonance modes over 60Hz) and angular resolution below 0.1 µrad over 11° range. On mirrors side, it has been used gonio mechanics from MIRAS* plus an eutectic InGa interface between cooling and optics to decouple them. Grating and mirror holders are fully removable from main mechanics to be able to assembled at lab measuring to achieve the best fit. Instrument has been already assembled and motions characterization or stability measurements are giving expected results matching with specifications.
* L. Ribó et al., "MECHANICAL DESIGN OF MIRAS, INFRARED MICROSPECTROSCOPY BEAM LINE AT ALBA SYNCHROTRON", presented at MEDSI’16, Barcelona, Spain, September 2016, doi:10.18429/JACoW-MEDSI2016-FRAA03
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides MOOB02 [3.249 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOOB02  
About • paper received ※ 28 July 2021       paper accepted ※ 01 September 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB02 Cryogenic Systems for Optical Elements Cooling at Sirius/LNLS controls, solenoid, cryogenics, vacuum 21
 
  • M. Saveri Silva, M.P. Calcanha, G.V. Claudiano, A.F.M. Fontoura, B.A. Francisco, L.M. Kofukuda, F.R. Lena, F. Meneau, G.B.Z.L. Moreno, G.L.M.P. Rodrigues, L. Sanfelici, H.C.N. Tolentino, L.M. Volpe
    LNLS, Campinas, Brazil
  • J.H. Řežende
    CNPEM, Campinas, SP, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Sirius, the Brazilian 4th-generation light source at the Brazilian Synchrotron Light Laboratory (LNLS), presents high-performance requirements in terms of preserving photon-beam quality, particularly regarding wavefront integrity and position stability. In this context, it is imperative that many silicon optical elements* be effectively cooled, such that temperatures and their control-related parameters can be precisely handled to the point in which thermal effects are acceptable concerning figure distortions and drifts at different timescales. For this class of precision equipment, the required performance can only be achieved with robust thermal management.** For this, relevant aspects related to the implementation of liquid nitrogen cooling systems need to be emphasized. Currently, two solutions are present at the first-phase beamlines, according to the component thermal load: (1) an in-house low-cost system for components under moderate loads (< 50 W), such as the mirror systems and the four-bounce monochromators, comprising a commercial cryostat connected to an instrumented vessel, whose level and pressure are controlled by the standard beamline automation system that can automatically feed it from a secondary service unit or a dedicated transfer line; (2) a commercial cryocooler for high-heat-load applications (50 - 3000 W), such as the double-crystal monochromators. This work presents the in-house solution: requirements, design aspects, operation range, as well as several discoveries and improvements deployed during the commissioning of the CATERETÊ and the CARNAÚBA beamlines, such as the prevention of ice formation, stabilization of both thermal load and flow-rate, and auto-filling parameters, among others.
*TOLENTINO. Innovative instruments (…) for the CARNAÚBA beamline at Sirius-LNLS. SRI (2018).
**VOLPE. Performance validation of the thermal model for optical components. Submit to MEDSI (2020)
 
poster icon Poster MOPB02 [2.364 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB02  
About • paper received ※ 25 July 2021       paper accepted ※ 13 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB06 Installation and Commissioning of the Exactly-Constrained X-Ray Mirror Systems for Sirius/LNLS MMI, alignment, controls, cryogenics 33
 
  • V.B. Zilli, C.S.N.C. Bueno, G.V. Claudiano, R.R. Geraldes, G.N. Kontogiorgos, F.R. Lena, S.A.L. Luiz, G.B.Z.L. Moreno, A.C. Pinto, G.L.M.P. Rodrigues, M.S. Souza, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Innovative exactly-constrained thermo-mechanical de-signs for beamline X-ray mirrors have been developed since 2017 at the 4th-generation Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). Due to the specific optical layouts of the beamlines, multiple systems cover a broad range of characteristics, including: power management from a few tens of mW to tens of W, via passive room-temperature operation, water cooling or indirect cryocooling using copper braids; mirror sizes ranging from 50 mm to more than 500 mm; mirrors with single or multiple optical stripes, with and without coat-ings; and internal mechanics with one or two degrees of freedom for optimized compromise between alignment features, with sub-100-nrad resolution, and high dynamic performance, with first resonances typically above 150 Hz. Currently, nearly a dozen of these in-house mirror systems is operational or in commissioning at 5 beam-lines at Sirius: MANACÁ, CATERETÊ, CARNAÚBA, EMA and IPÊ, whereas a few more are expected by the end of 2021 with the next set of the forthcoming beam-lines. This work highlights some of the design variations and describes in detail the workflow and the lessons learned in the installation of these systems, including: modal and motion validations, as well as cleaning, as-sembling, transportation, metrology, fiducialization, alignment, baking and cooling. Finally, commissioning results are shown for dynamic and thermal stabilities, and for optical performances.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster MOPB06 [1.959 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB06  
About • paper received ※ 12 August 2021       paper accepted ※ 13 October 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC03 Diamond Refractive Optics Fabrication by Laser Ablation and at-Wavelength Testing laser, synchrotron, FEM, experiment 59
 
  • S.P. Antipov, E. Gomez
    Euclid TechLabs, Solon, Ohio, USA
  • R. Celestre, T. Roth
    ESRF, Grenoble, France
 
  Funding: SBIR grant #DE-SC0013129
The next generation light sources will require x-ray optical components capable of handling large instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Diamond being radiation hard, low Z material with outstanding thermal properties is proposed for front pre-focusing optics applications. Euclid Techlabs had been developing x-ray refractive diamond lens to meet this need. Standard deviation of lens shape error figure gradually was decreased to sub-micron values. Post-ablation polishing procedure yields ~ 10nm surface roughness. In this paper we will report on recent developments towards beamline-ready lens including packaging and compound refractive lens stacking. Diamond lens fabrication is done by femtosecond laser micromachining. We had been using this technology for customization of other beamline components. Several application cases will be highlighted in this presentation: diamond anvils, x-ray flow cells and in-beam mirrors.
 
poster icon Poster MOPC03 [1.754 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC03  
About • paper received ※ 21 July 2021       paper accepted ※ 01 October 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC10 Mechanical Design Progress of the In Situ Nanoprobe Instrument for APS-U vacuum, synchrotron, ISOL, controls 71
 
  • S.P. Kearney, S. Chen, B. Lai, J. Maser, T. Mooney, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The In Situ Nanoprobe (ISN, 19-ID) beamline will be a new best-in-class long beamline to be constructed as part of the Advanced Photon Source Upgrade (APS-U) project*,**. To achieve long working distance at high spatial resolution, the ISN instrument will be positioned 210 m downstream of the x-ray source, in a dedicated satellite building, currently under construction***. The ISN instrument will use a nano-focusing Kirkpatrick-Baez (K-B) mirror system, which will focus hard x-rays to a focal spot as small as 20 nm, with a large working distance of 61 mm. The large working distance provides space for various in situ sample cells for x-ray fluorescence tomography and ptychographic 3D imaging, allows the use of a separate, independent vacuum chambers for the optics and sample, and provides the flexibility to run experiments in vacuum or at ambient pressure. A consequence of the small spot size and large working distance is the requirement for high angular stability of the KB mirrors (5 nrad V-mirror and 16 nrad H-mirror) and high relative stability between focus spot and sample (4 nmRMS). Additional features include fly-scanning a maximum of a 2 kg sample plus in situ cell at 1 mm/s in vertical and/or horizontal directions over an area of 10 mm x 10 mm. Environmental capabilities will include heating and cooling, flow of fluids and applied fields, as required for electrochemistry and flow of gases at high temperature for catalysis. To achieve these features and precise requirements we have used precision engineering fundamentals to guide the design process. We will discuss in detail the current design of the instrument focusing on the precision engineering used to achieve the stability, metrology, and positioning requirements.
* J. Maser, et al. Metal and Mat Trans A (2014) 45: 85.
** J. Maser, et al. Microsc. Microanal. 24 (Suppl 2), 2018.
*** S. P. Kearney, et al. Synchrotron Radiat. News Volume 32 (5), 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC10  
About • paper received ※ 28 July 2021       paper accepted ※ 05 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOA01 Surface Twist Characterization and Compensation of an Elliptically Bent Hard X-Ray Mirror MMI, photon, simulation, focusing 99
 
  • Z. Qiao, J.W.J. Anton, L. Assoufid, S.P. Kearney, S.T. Mashrafi, J. Qian, X. Shi, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357
Deformable optics, including mechanically-bent and bimorph mirrors, are essential optical elements for X-ray beam dynamical focusing and wavefront correction. Existing mechanical bender technology often suffers from poor repeatability and does not include twist compensation. We recently developed an elliptically bent mirror based on a laminar flexure bending mechanism that yielded promising results*,**. In this work, the mirror surface twist was characterized using a Fizeau interferometer under different bending conditions. By applying a shimming correction, the surface twist was successfully reduced from 50 urad to 1.5 urad. The twist angle variation from no bending to the maximum bending is less than 0.5 urad. Our simulation results show that these numbers are significantly lower than the required values to ensure optimum optical performance. The study demonstrates the effectiveness of the twist compensation procedures and validates the mirror bender design parameters.
*Shu, D. et al., AIP Conference Proceedings. Vol. 2054. No. 1, 2019.
**Anton, Jayson WJ et al., Optomechanical Engineering 2019. Vol. 11100, 2019.
 
slides icon Slides TUOA01 [2.257 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUOA01  
About • paper received ※ 29 July 2021       paper accepted ※ 14 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOB01 Exactly-constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at CARNAÚBA Beamline alignment, experiment, MMI, focusing 111
 
  • G.B.Z.L. Moreno, C.S.N.C. Bueno, R.R. Geraldes, F.R. Lena, S.A.L. Luiz, E.O. Pereira, H.C.N. Tolentino, Y.R. Tonin, W.H. Wilendorf
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Next-generation nanoprobes, empowered by diffraction-limited storage rings, as Sirius/LNLS, present high-performance requirements aiming at high spatial resolution and throughput. For the focusing optics, this means assuring a small and non-astigmatic probe, high flux density, and remarkably high position stability, while also preserving beam wavefront. At stations further dedicated to spectromicroscopy and in-situ experiments, these requirements add up to having achromatic design and suitable working distance, respectively. In this way, Kirkpatrick-Baez (KB) mirrors have been chosen as the most appropriate solution for Sirius focusing optics. At TARUMÃ*, the first delivered nanoprobe at Sirius, the KB focuses the beam down to a 120 nm spot size (>8 keV) with a 440 mm working distance. This brought the requirements on the mirror’s angular stability to less than 10 nrad RMS, surface quality to single-digit nanometers, and alignment tolerances to the range of hundreds of nrad, which can be even tighter for other nanoprobes. Such specifications are particularly challenging regarding clamping, vibration, and thermal expansion budgets, even testing optical metrology limits during alignment and validation phases. The resulting KB mechanism is an opto-mechanical system with an exactly-constrained, deterministic design**, and suspension modes well above 250 Hz, sufficiently coupling optics to sample in the same 6-DoF base. It provides low-order aberration corrections by single degree-of-freedom alignment with piezo actuators, while higher order aberrations from clamping and thermal deformations are mitigated by gluing each mirror to flexure-based mounting frames. This contribution presents the design, assembly, and commissioning of the KB system at TARUMÃ as a reference case.
*Tolentino, H.C.N., et al. "TARUMÃ station for the CARNAÚBA beamline at SIRIUS/LNLS" SPIE 11112 19
**Geraldes, R.R., et al. "The Design of Exactly-constrained X-ray Mirror Systems for Sirius." MEDSI18
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides TUOB01 [5.780 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUOB01  
About • paper received ※ 25 July 2021       paper accepted ※ 17 September 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOB02 Development of a Passive Tuned Mass Damper for Ultra-High Vacuum Beamline Optics damping, resonance, target, experiment 115
 
  • F. Khan, D. Crivelli, J.H. Kelly, A. Male
    DLS, Oxfordshire, United Kingdom
 
  Vibration in beamline optics can degrade the quality of experiments: the resulting movement of a mirror increases the x-ray beam position uncertainty, and introduces flux variations at the sample. This is normally dealt with by averaging data collection over longer periods of time, by slowing down the data acquisition rates, or by accepting lower quality / blurred images. With the development of faster camera technology and smaller beam sizes in next generation synchrotron upgrades, older optics designs can become less suitable, but still very expensive to redesign. Mechanically, mirror actuation systems need to be a balance between repeatability of motion and stability. This normally leads to designs that are ’soft’ and have resonant modes at a relatively low frequency, which can be easily excited by external disturbances such as ground vibration and local noise. In ultra-high vacuum applications the damping is naturally very low, and the amplification of vibration at resonance tends to be very high. At Diamond we designed a process for passively damping beamline mirror optics. First, we analyse the mirror’s vibration modes using experimental modal analysis; we then determine the tuned mass damper parameters using mathematical and dynamic models. Finally, we design a flexure-based metal tuned mass damper which relies on eddy current damping through magnets and a conductor plate. The tuned mass damper can be retrofitted to existing optics using a clamping system that requires no modification to the existing system. In this conference paper we show a case study on a mirror optic on Diamond Light Source’s small molecule single crystal diffraction beamline, I19.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides TUOB02 [1.568 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUOB02  
About • paper received ※ 06 July 2021       paper accepted ※ 14 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA04 Investigations on Stability Performance of Beamline Optics Supports at BSRF GUI, SRF, vacuum, site 125
 
  • W.F. Sheng, H. Liang, Y.S. Lu, Z. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: This research is supported by National Natural Science Foundation of China (NSFC) (No.11905243).
The stability of beamline optics directly affects the beamline’s performances, such as coherence, focal size, position stability of the beam and so on, it has become a serious issue for a low emittance 4th generation light source. The vibration transmitting function of supports plays a big role in the stability performance of the optics. In order to find out a stable supporting structure, several types of support structures were tested, and the transfer ratio were described. The result shows that wedge struc-tures generally have a lower transfer ratio, and point contact support structures should be avoided.
 
poster icon Poster TUPA04 [2.193 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA04  
About • paper received ※ 01 August 2021       paper accepted ※ 17 September 2021       issue date ※ 29 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC02 Bringing the Ground Up (When Is Two Less Than One?) site, photon, distributed, software 182
 
  • A.A. Khan, C.A. Preissner
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade project has employed the use of high heat load dual mirror systems in the new feature beamlines being built. Due to the shallow operating angles of the mirrors at a particular beamline, XPCS, the two mirrors needed to be approximately 2.5 m apart to create a distinct offset. Two separate mirror tanks are used for this system. However, it is unclear if the vibrational performance of these tanks would be better if they were both mounted on one large plinth or each mounted on a small plinth. Using accelerometers at the installation location, the floor vibrations were measured. The resulting frequency response function was then imported into a Finite Element Analysis software to generate a harmonic response analysis. The two different plinth schemes were modeled and the floor vibration was introduced as an excitation to the analysis. The relative pitch angle (THETA Y) between the mirrors was evaluated as well as the relative gap between the mirrors (XMAG). Results showed that a single plinth reduces the relative XMAG (RMS) compared to two plinths by approximately 25%. However, the relative THETA Y (RMS), which is arguably more critical, is significantly lower by approximately 99.7% in two plinths when compared to a single plinth. Therefore, it is more effective to use two separate plinths over a longer distance as opposed to a single longer granite plinth.
 
poster icon Poster TUPC02 [0.503 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC02  
About • paper received ※ 23 July 2021       paper accepted ※ 15 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC10 Modular Nanopositioning Flexure Stages Development for APS Upgrade K-B Mirror Nanofocusing Optics focusing, alignment, photon, synchrotron 199
 
  • D. Shu, J.W.J. Anton, L. Assoufid, S.J. Bean, D. Capatina, V. De Andrade, E.M. Dufresne, T. Graber, R. Harder, D. Haskel, K. Jasionowski, S.P. Kearney, A.A. Khan, B. Lai, W. Liu, J. Maser, S.T. Mashrafi, G.K. Mistri, S. Narayanan, C.A. Preissner, M. Ramanathan, L. Rebuffi, R. Reininger, O.A. Schmidt, X. Shi, J.Z. Tischler, K.J. Wakefield, D. Walko, J. Wang, X. Zhang
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Kirkpatrick and Baez (K-B) mirror-based nanofocusing optics* will be applied to many beamlines endstation instruments for the APS-Upgrade (APS-U) project. Precision nanopositioning stages with nanometer-scale linear positioning resolution and nanoradian-scale angular stability are needed as alignment apparatus for the K-B mirror hard X-ray nanofocusing optics. For instance, at the APS-U 19-ID In Situ Nanoprobe beamline endstation**, to maintain stability of a 20-nm focal spot on the sample, nanofocusing K-B mirror system with 5-nrad angular stability is required. Similar angular resolution and stability are also required for APS-U 9-ID CSSI***, APS-U 34-ID ATOMIC**** and other beamline endstation instruments. Modular nanopositioning flexure stages have been developed for the K-B mirror nanofocusing optics, which includes: linear vertical and horizontal flexure stages, tip-tilting flexure stages, and flexure mirror benders for bendable nanofocusing K-B mirrors, to overcome the performance limitations of precision ball-bearing-based or roller-bearing-based stage systems. The mechanical design and preliminary test results are described in this paper.
* Kirkpartrick and Baez, JOSA. 1948; 38(9): 766-773.
** S. Kearney et al., this conference.
*** J. Anton et al., this conference.
**** C. Preissner et al., this conference.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC10  
About • paper received ※ 02 August 2021       paper accepted ※ 21 October 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC14 Copper Braid Heat Conductors for Sirius Cryogenic X-Ray Optics interface, cryogenics, vacuum, radiation 207
 
  • F.R. Lena, G.V. Claudiano, J.C. Corsaletti, R.R. Geraldes, D.Y. Kakizaki, R.L. Parise, M. Saveri Silva, M.S. Souza, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The low emittance and high photon flux beam present at the 4th-generation Sirius synchrotron light source beamlines result in high energy densities and high heat loads at some specific X-ray optics such as monochromators and white beam mirrors. This challenges the design of such systems since the introduction of thermal stresses may lead to optical surface deformation and beam degradation. Thus, to keep the systems within acceptable deformations some of the optical elements are cryogenically cooled. However, this poses the requirements of decoupling the thermal sinks (cryostats) from the optics and the mechanisms to maintain their desired degrees of freedom for alignment and dynamic operation. In this context we present the development of low-stiffness copper-braid-based heat conductors, summarizing the motivation and main aspects regarding their fabrication and application at the beamlines.
 
poster icon Poster TUPC14 [1.783 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC14  
About • paper received ※ 28 July 2021       paper accepted ※ 19 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC15 A New Ultra-Stable Variable Projection Microscope for the APS Upgrade of 32-ID focusing, synchrotron, photon, interface 211
 
  • S.J. Bean, V. De Andrade, A. Deriy, K. Fezzaa, T. Graber, J. Matus, C.A. Preissner, D. Shu
    ANL, Lemont, Illinois, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
A new nano-computed tomography projection microscope (n-CT) is being designed as part the Advanced Photon Source Upgrade (APS-U) beamline enhancement at sector 32-ID. The n-CT will take advantage of the APS-U source and provide new capabilities to the imaging program at 32-ID. A Kirkpatrick and Baez (KB) mirror-based nanofocusing optics [1,2] will be implemented in this design. To meet the n-CT imaging goals, it is the desire to have sub 10 nanometer vibrational and thermal drift stability over 10-minute measurement durations between the optic and the sample. In addition to the stability requirements, it is desired to have a variable length sample projection axis of up to 450 mm. Such stability and motion requirements are challenging to accomplish simultaneously due to performance limitations of traditional motion mechanics and present a significant engineering challenge. To overcome these limitations, the proposed n-CT design incorporates granite air bearing concepts initially used in the Velociprobe [3]. These types of granite stages have been incorporated into many designs at APS [4] and at other synchrotron facilities [5]. Utilizing the granite air bearing concept, in tandem with other design aspects in the instrument, the requirements become reachable. A novel multi-degree of freedom wedge configuration is also incorporated to overcome space limitations. The design of this instrument is described in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC15  
About • paper received ※ 12 August 2021       paper accepted ※ 19 October 2021       issue date ※ 02 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA07 The Fizeau System Instrument at ALBA Optics Laboratory GUI, controls, alignment, ISOL 235
 
  • L.R.M. Ribó, D. Alloza, C. Colldelram, J. Nicolás, I. Šics
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA optics laboratory has recently acquired a new Zygo Verifire HD Fizeau interferometer. The instrument has been integrated into a positioning stage to allow stitching of long x-ray optical elements. The mechanical set up, with four axes, allows for automatic positioning and alignment of the interferometer aperture to the surface under test. The longitudinal movement allows for scan of X-ray mirrors up to 1500 m long. The positioning platform includes two angles, roll and yaw, and two translations, vertical and longitudinal translations. The longitudinal translation is a custom designed linear stage. The yaw rotation is based on a sine arm mechanism. The vertical and roll motions are combined in a single stage, closely integrated around the main linear stage. The system reaches repeatabilities better than 1 µm or 1 µrad for all axes. The system is mounted on top of a vibration isolated bench in the clean room of the laboratory. The control software of the instrument allow direct control of every individual axis, and allows selecting the center of rotation for both roll and yaw. The system includes inclinometers and autocollimators to control the relative orientation between the interferometer and the mirror under test. The system is integrated to the software of the interferometer, and includes features for automatic alignment of the interferometer to the mirror, or for automatic stitching acquisition, with selectable parameters. The system allows for full three-dimensional characterization of the optical surface of mirrors and gratings, and provides height map reconstructions with accuracy in the order of 1 nm, for flat or curved surfaces with lengths up to 1500 mm.  
poster icon Poster WEPA07 [2.785 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA07  
About • paper received ※ 29 July 2021       paper accepted ※ 21 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA12 X-Ray Facility for the Characterization of the ATHENA Mirror Modules at the ALBA Synchrotron detector, vacuum, synchrotron, controls 252
 
  • A. Carballedo, J.J. Casas, C. Colldelram, G. Cuní, D. Heinis, J. Marcos, O. Matilla, J. Nicolás, A. Sánchez, N. Valls Vidal
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • N. Barrière, M.J. Collon, G. Vacanti
    Cosine Measurement Systems, Warmond, The Netherlands
  • M. Bavdaz, I. Ferreira
    ESA-ESTEC, Noordwijk, The Netherlands
  • E. Handick, M. Krumrey, P. Mueller
    PTB, Berlin, Germany
 
  MINERVA is a new X-ray facility under construction at the ALBA synchrotron specially designed to support the development of the ATHENA (Advanced Telescope for High Energy Astrophysics) mission. The beamline design is originally based on the monochromatic pencil beam XPBF 2.0 from the Physikalisch-Technische Bundesanstalt (PTB), at BESSY II already in use at this effect. MINERVA will host the necessary metrology equipment to integrate the stacks produced by the cosine company in a mirror module (MM) and characterize their optical performances. From the opto-mechanical point of view, the beamline is made up of three main subsystems. First of all, a water-cooled multilayer toroidal mirror based on a high precision mechanical goniometer, then a sample manipulator constituted by a combination of linear stages and in-vacuum hexapod and finally an X-ray detector which trajectory follows a cylinder of about 12 m radius away from the MM. MINERVA is funded by the European Space Agency (ESA) and the Spanish Ministry of Science and Innovation. MINERVA is today under construction and will be completed to operate in 2022.  
poster icon Poster WEPA12 [1.175 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA12  
About • paper received ※ 21 July 2021       paper accepted ※ 19 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA14 All Applications of the ALBA Skin Concept synchrotron, detector, GUI, insertion-device 259
 
  • A. Crisol, A. Carballedo, C. Colldelram, N González, J. Juanhuix, J. Nicolás, L.R.M. Ribó, C. Ruget
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L.W.S. Adamson
    ASCo, Clayton, Victoria, Australia
  • J.B. González Fernández
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E.R. Jane
    FMB Oxford, Oxford, United Kingdom
 
  During the ALBA design phase, the protein macromolecular protein crystallography beamline, XALOC, required several in-house developments. The major part of these designs was at the end station where the necessity of customization is always much higher. The most relevant of these instruments was the beam conditioning elements table [1]. This accurate stage, which supports the diffractometer as well, includes the four movements required to align the components to the nominal beam as well as position the diffractometer. This design compacts, especially the vertical and pitch movements, both in a single stage, with a couple of stages for all four excursions. The solution maximise the stiffness and preserves at the same time the resolution close to 0.1µm while being able to withstand a half tone of payload. Thanks this compactness and performances this design concept, the vertical and pitch combined stage, was not only applied at XALOC for its diffractometer and detector table, but it has been widely adapted at several ALBA beamlines: at NCD-SWEET [2] as a detector table, a beam conditioning elements table [3] and sample table, at MSPD beamline as the KB table, at NOTOS beamline as metrology table, and also at the new ESA MINERVA beamline [4] for their sample mirror modules positioning. Beamlines have not been the only beneficiaries of this design, also different kind of instrumentation like an hall probe measuring bench [5], and even a stitching platform for the ALBA optics laboratory [6]. Moreover, the concept has outreach ALBA and has been adopted also at other facilities worldwide, synchrotrons and also scientific instrumentation suppliers around Europe. This poster presents most of the applications of the skin concept and their variations and main measured performances.  
poster icon Poster WEPA14 [2.221 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA14  
About • paper received ※ 29 July 2021       paper accepted ※ 22 October 2021       issue date ※ 09 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC02 A Cryogenic Sample Environment for the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS controls, cryogenics, synchrotron, MMI 306
 
  • F.R. Lena, C.S.N.C. Bueno, F.H. Cardoso, J.C. Carvalho, M.M. Donatti, R.R. Geraldes, L.M. Kofukuda, L.S. Perissinotto, E. Piragibe, C. Sato, H.C.N. Tolentino, W.H. Wilendorf
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology, and Innovation (MCTI)
TARUMÃ is the sub-microprobe station of CAR-NAÚBA (Coherent X-Ray Nanoprobe Beamline) at Sirius at the Brazilian Synchrotron Light Laboratory (LNLS). Covering the tender-to-hard energy range from 2.05 to 15 keV with achromatic fixed-shape optics, the fully coherent submicron focused beam can be used for multiple simultaneous advancedμand nanoscale X-ray techniques that include ptychography coherent diffraction imaging (ptycho-CDI), absorption spectroscopy (XAS), diffraction (XRD), fluorescence (XRF) and luminescence (XEOL). Among the broad range of materials of interest, studies of light elements present in soft tissues and other biological systems put TARUMÃ in a unique position in the Life and Environmental Sciences program at LNLS. Yet, to mitigate the detrimental effect of the high photon flux of the focused beam due to radiation damage, cryocooling may be required. Here we present the design and first results of a novel open-atmosphere cryogenic system for online sample conditioning down to 110 K. The high-stiffness and thermally-stable sample holder follows the predictive design approach based on precision engineering principles to preserve the nanometer-level positioning requirements, whereas a commercial nitrogen blower is used with a cold gas flow exhaustion system that has been developed in order to avoid unwanted cooling of surrounding parts and water condensation or icing.
 
poster icon Poster WEPC02 [2.172 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC02  
About • paper received ※ 29 July 2021       paper accepted ※ 17 October 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC07 Thermal Model Validation for the Cryogenic Mirror Systems for Sirius/LNLS synchrotron, experiment, radiation, cryogenics 320
 
  • L.M. Volpe, J.C. Corsaletti, B.A. Francisco, R.R. Geraldes, M.S. Silva
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
One of the challenges of fourth-generation synchrotron light sources as Sirius at the Brazilian Synchrotron Light Laboratory (LNLS) is the high power density that may affect the beamline optical elements by causing figure deformations that deteriorate the quality of the beam. Indeed, surface specifications for height errors of X-ray mirrors are often within a few nanometers. To deal with these thermal management challenges, thermo-mechanical designs based on cryogenic silicon have been developed, taking advantage of its high thermal conductance and low thermal expansion in temperatures of about 125 K. A liquid nitrogen (LN2) cryostat connected to the optics by copper braids has been used to handle moderate power loads, reducing costs when compared to closed-circuit LN2 cryocoolers and mechanically decoupling flow-induced vibrations from the optics. To guarantee the functionality of such systems, lumped mass thermal models were implemented together with auxiliary finite elements analyses. With the first systems in operation, it has been possible to compare and validate the developed models, and to carry out optimizations to improve them for future projects, by adjusting parameters such as emissivity, thermal contact resistance, and copper braid conductance. This work presents the updated models for CARNAÚBA and CATERETÊ beamlines as reference cases.
 
poster icon Poster WEPC07 [18.496 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC07  
About • paper received ※ 12 August 2021       paper accepted ※ 28 September 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC10 Design of Vacuum Chamber With Cryogenic Cooling of Samples for Bragg-Plane Slope Error Measurements vacuum, cryogenics, photon, radiation 327
 
  • J.W.J. Anton, P. Pradhan, D. Shu, Yu. Shvyd’ko
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Wavefront preservation is essential for numerous X-ray science applications. Research is currently underway at the Advanced Photon Source to characterize and minimize Bragg-plane slope errors in diamond crystal optics*. Understanding the effect of cooling the optics to cryogenic temperatures on Bragg-plane slope errors is of interest to this research. Through the use of a finite element model a custom, compact vacuum chamber with liquid nitrogen cooling of samples was designed and manufactured. The design process and initial results are discussed in this paper.
*P. Pradhan et al., J. of Synchrotron Radiation 6, 1553 (2020)
 
poster icon Poster WEPC10 [0.903 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC10  
About • paper received ※ 13 August 2021       paper accepted ※ 19 October 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)