Keyword: synchrotron-radiation
Paper Title Other Keywords Page
MOOB03 Bendable KB Type Focusing Mirrors Designed for TPS IR Beamline focusing, simulation, FEM, synchrotron 17
 
  • T.C. Tseng, H.S. Fung, H.C. Ho, K.H. Hsu, C.S. Huang, D.-G. Huang, C.K. Kuan, W.Y. Lai, C.J. Lin, S.Y. Perng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  A new IR beamline has been scheduled at TPS beam-line construction Phase III. The new beamline optical design is following the structure of the existed TLS IR beamline. However, the focusing mirrors has to be re-deign according to different situation. These KB type mirrors (HFM and VFM) are same thickness flat stain-less plates assembled with bending arms and bended with single motor each to fit quintic polynomial surface pro-files for focusing and also modifying arc source effect of bending section. For a same thickness plate in addition with the bending arms effect to form a desired polynomi-al surface profile, it demands specific width distribution. With the drawing method and FEM iteration simulation, the optimized surface polynomial equation and width distribution design of the mirror plates were defined. The detailed design sequences will be described in this paper.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides MOOB03 [5.530 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOOB03  
About • paper received ※ 29 July 2021       paper accepted ※ 01 September 2021       issue date ※ 30 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC07 Weldable Copper Chromium Zirconium Mask photon, synchrotron, radiation, undulator 65
 
  • T.J. Bender, O.A. Schmidt, W.F. Toter
    ANL, Lemont, Illinois, USA
 
  Funding: Argonne National Laboratory’s work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.
A novel design for a weldable copper chromium zirconium (CuCrZr) mask has been developed for use in Advanced Photon Source Upgrade (APSU) beamlines. In the past, welding has been avoided for CuCrZr; however, the approach this alternative utilizes promises to drastically reduce cost and lead time over traditional brazed CuCrZr and welded Glidcop mask designs. Multiple thermal analyses of the mask have predicted that it will meet required mechanical and thermal requirements suitable for high heat load applications. As of the writing of this paper, a prototype is being fabricated for installation and testing on the 28-ID Coherent High Energy X-ray (CHEX) beamline.
 
poster icon Poster MOPC07 [0.818 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC07  
About • paper received ※ 15 July 2021       paper accepted ※ 13 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA01 Oxygen-Free Titanium Thin Film as a New Nonevaporable Getter with an Activation Temperature as Low as 185 °C vacuum, site, quadrupole, synchrotron 119
 
  • M. Ono, I. Yoshikawa, K. Yoshioka
    University of Tokyo, Kashiwa, Japan
  • T. Kikuchi, K. Mase
    KEK, Tsukuba, Japan
  • K. Mase
    Sokendai, The Graduate University for Advanced Studies, Tsukuba, Japan
  • Y. Masuda, Y. Nakayama
    Tokyo University of Science, Noda, Japan
  • S. Ohno
    Yokohama National University, Yokohama, Japan
  • K. Ozawa
    TIT, Tokyo, Japan
  • Y. Sato
    Yokohama National University, Graduate School of Engineering Science, Yokohama, Japan
 
  Funding: This work was partly supported by JSPS KAKENHI (17K05067, 19K05280) and TIA-Kakehashi (TK19-035, TK20-026). The XPS measurements were performed under the Photon Factory proposal (2018S2-005).
Although nonevaporable getter (NEG) pumps are widely used in synchrotron radiation facilities, pure metal Titanium (Ti) has not been used as a NEG because the activation temperature of a Ti thin film deposited by DC magnetron sputtering was reported to be 350-400 °C*. Recently Miyazawa et al. found that high-purity Ti deposited under ultra-high vacuum (UHV) followed by N2 introduction works as a NEG with an activation temperature of 185 °C**,***. Since the concentration of impurities such as O, C, and N in the Ti thin film prepared by this method is 0.05% or less, we named this as oxygen-free Ti. In this study, we evaluated the pumping properties of oxygen-free Ti thin films after high-purity N2 introduction by total and partial pressure measurements. A vacuum vessel with oxygen-free Ti deposited on the inner walls was found to pump H2, H2O, O2, CO and CO2 even after 30 cycles of high purity N2 introduction, air exposure, pumping, and baking at 185 °C. Furthermore, we analyzed the oxygen-free Ti thin films after high-purity N2 or air introduction by synchrotron radiation X-ray photoelectron spectroscopy. The results show that more TiN was formed when high-purity N2 was introduced after oxygen-free Ti deposition. High purity of the Ti thin film and TiN formation on the surface seem to be responsible for the reduced activation temperature as low as 185 °C.
*C. Benvenuti et al., J. Vac. Sci. Technol. A 16, 148 (1998).
**T. Miyazawa et al., Vac. Surf. Sci. 61, 227 (2018).
***KEK, patent pending, WO2018097325 (Nov. 28, 2017).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA01  
About • paper received ※ 30 July 2021       paper accepted ※ 14 October 2021       issue date ※ 01 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA05 Research on Vibration Stability of SAPS Foundation photon, synchrotron, ISOL, radiation 128
 
  • G.Y. Wang, J.X. Chen, C.J. Ning, J.B. Yu, Y.J. Yu, J.S. Zhang, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • H.Y. He, L. Kang, L. Liu, R.H. Liu, X.J. Nie, A.X. Wang, L.Q. Zhao
    IHEP, Beijing, People’s Republic of China
 
  The construction of the South Advanced Light Source Platform will be completed in 2021. Among them, the high-precision test hall requires that the effective value of the micro-vibration of the foundation be controlled within the vibration range of 25nm, which has already met the requirements of nanometer level. Research at dongguan machinery group, therefore, in view of the high precision testing hall, south of advanced light source is proposed to geological environment factors, carry out detailed geological survey measurement, focus on the advanced light source foundation vibration test, resistance to vibration and vibration characteristics research foundation and anti-vibration scheme research and the advanced light source is the key equipment vibration reduction technology research, through to the light source address of the proposed foundation vibration test, the vibration of foundation design, synchrotron radiation device key equipment comprehensive analysis and research of vibration reduction technology, formed a series of foundation vibration and key equipment solution, for the later construction of the southern light source to lay a solid foundation.  
poster icon Poster TUPA05 [0.361 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPA05  
About • paper received ※ 12 July 2021       paper accepted ※ 14 October 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB08 High-Precision Synchrotron Kappa Diffractometer detector, synchrotron, alignment, electron 163
 
  • G. Olea, N. Huber, J. Zeeb
    HUBER Diffraktiontechnik GmbH&Co.KG, Rimsting, Germany
 
  A new research product aiming to work in a 3th generation synchrotron facility (PAL/PLS II) has been developed. Based on increased energy X-ray synchrotron radiation tool and well-known Kappa geometry device principle, the product is expected that will investigate atomic and molecular structures of materials at nanoscale level using several X-ray diffraction techniques. The Kappa diffractometer (K-Dm) machine is maintaining the common structural principle of its family, but working with an extreme precision and load, which is far of the competition. The main body is consisting from customized Kappa goniometer (KGm) device with vertical axis of rotation for high-precision sample (cryostat) manipulation, versatile detector arm (Da) for manipulating in horizontal plan different detectors (optics, slits, etc.) after X-ray beam is scattered and stable alignment base (Ab) for roughly adjusting the product around the X-ray beam. In addition, a XYZ cryo-carrier inside of the KGm is included for fine (submicron) sample adjustments. The kinematic, design and precision concepts applied, together with the obtained test results are all in detail presented.*
* HUBER Diffraction and Positioning GmbH&Co.KG, https://www.xhuber.com/en/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPB08  
About • paper received ※ 16 July 2021       paper accepted ※ 16 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC11 The HD-DCM-Lite: A High-Dynamic DCM with Extended Scanning Capabilities for Sirius/LNLS Beamlines controls, synchrotron, radiation, instrumentation 203
 
  • A.V. Perna, H.O.C. Duarte, R.R. Geraldes, M.A.L. Moraes, M. Saveri Silva, M.S. Souza, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
After successfully designing, installing, and commissioning two units of the High-Dynamic Double-Crystal Monochromator (HD-DCM) at the Brazilian Synchrotron Light Laboratory (LNLS) - Sirius, two more units are now required. Since they demand only a smaller energy range (5 to 35 keV), the total gap stroke of the new instruments can be significantly reduced, creating an opportunity to adapt the existing design towards the so-called HD-DCM-Lite. Removing the large gap adjustment mechanism allows a reduction of the main inertia by a factor of 5, enabling the HD-DCM-Lite to deliver energy flyscans of hundreds of eV reaching 20 cycles per second while keeping fixed exit and the pitch stability in the range of 10 nrad RMS (1 Hz - 2.5 kHz). Hence, an unparallel bridge between slow step-scan DCMs and fast channel-cut monochromators is created. This work presents the in-house development of the HD-DCM-Lite, focusing on its mechanical design, discussions on the ultimate scanning constraints (rotary stage torque, voice-coil forces, interferometers and encoders readout speed limits and subdivisional errors), and thermal management.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster TUPC11 [3.155 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-TUPC11  
About • paper received ※ 28 July 2021       paper accepted ※ 16 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOA03 Updated High Heat Load Front-Ends for SLS 2.0 photon, radiation, synchrotron, insertion-device 221
 
  • D.M. Just, C. Pradervand
    PSI, Villigen PSI, Switzerland
 
  The Swiss Light Source (SLS) at the Paul Scherrer Institut (PSI) in Switzerland will undergo from 2021 to 2024 an upgrade named SLS 2.0 to increase brightness and coherence. This upgrade will have a significant impact on the existing front-ends. Due to the proven reliability and good concept, we plan a refurbishment strategy for all front-end (FE) components where possible. New source points for all beam-lines – resulting in shifts both lateral and tangential, newly developed insertion devices and bending magnets as well as spatial restrictions due to the multi bend achromat (MBA) design challenges this strategy. We demonstrate how we plan to deal with these challenges for the case of high heat load FEs. We will address how the acceptance of the FE was chosen due flux and power calculations of the insertion device and the design and thermal analysis of a novel primary aperture. The adaptions that will be made to the tungsten blade X-Ray beam positioning monitors (W-XBPM) and modifications on the photon shutter will be discussed. Furthermore, we will take a brief excursion on how we want to organize the refurbishment during the shutdown period of the upgrade.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides WEOA03 [3.528 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEOA03  
About • paper received ※ 07 July 2021       paper accepted ※ 16 October 2021       issue date ※ 08 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA16 Development and Applications of the White Beam Position Monitor for Bending Magnet Beamlines radiation, simulation, controls, synchrotron 263
 
  • C.Y. Chang, C.F. Chang, C.H. Chang, S.H. Chang, L.C. Chiang, R. Lee, B.Y. Liao, C.Y. Liu
    NSRRC, Hsinchu, Taiwan
 
  We developed a white beam position detector to be applied in beamlines with bending magnets. By 0.1 mm light-receiving opening, the beam is split and converted to a photocurrent intensity which can be used to detect the size and position of the beam is less than or equal to 50 mm, and to locate the positions of the beamline components. This is a stop-beam measurement method, so it cannot be used to monitor the beam in real time. The motorized stage of the detector has a range of motion up to ± 25 mm with position accuracy not more than 1 micrometer and vacuum capability not more than 5 × 10 -10 Torr, which is compatible with ultra-high vacuum environments. In addition, taking the thermal load 62.89 W of the TPS 02A beamline as an example, the thermal deformation of the analog detector opening lead to a result that the measured value will have a maximum of 2 micrometer from the center of the beam. Finally, and the whole system has been successfully applied in the TPS 02A beamline.all features are verified and the performance meets the requirements, Besides the positioning tasks of Mask and Slits1 was completed and the position change of the light source was detected.  
poster icon Poster WEPA16 [0.910 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPA16  
About • paper received ※ 01 July 2021       paper accepted ※ 19 October 2021       issue date ※ 31 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC09 Temperature-Dependent Elastic Constants and Young’s Modulus of Silicon Single Crystal cryogenics, lattice, synchrotron, photon 324
 
  • Z. Liu
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Silicon crystals have been widely applied for x-ray monochromators. It is an anisotropic material with temperature dependent properties. Values of its thermal properties from cryogenic to high temperature are available in literature for expansion, conductivity, diffusivity, heat capacity, but neither elastic constants nor Young’s modulus. X-ray monochromators may be liquid-nitrogen cooled or water cooled. Finite Element Analysis (FEA) is commonly used to predict thermal performance of monochromators. The elastic constants and Young’s modulus over cryogenic and high temperature are now collected and derived from literature, with the purpose of assisting in providing accurate FEA predictions.
 
poster icon Poster WEPC09 [0.647 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC09  
About • paper received ※ 23 July 2021       paper accepted ※ 06 October 2021       issue date ※ 28 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOA01 A Family of High-Stability Granite Stages for Synchrotron Applications synchrotron, instrumentation, GUI, radiation 341
 
  • C.A. Preissner, S.J. Bean, M. Erdmann
    ANL, Lemont, Illinois, USA
  • M. Bergeret, J.R. Nasiatka
    LBNL, Berkeley, California, USA
 
  Funding: Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Engineers at the APS have developed a granite, air-bearing stage concept that provides many millimeters of motion range and nanometer-level vibrational stability. This technique was first conceptualized and used on the Velociprobe x-ray microscope. The success of that design spurred adaption of the approach to over 90 devices, including many new instruments at the APS and high performing instruments at other synchrotrons. This paper details the design concept, some performance measurements, and new developments allowing for a six-degree-of-freedom device.
 
slides icon Slides THOA01 [12.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-THOA01  
About • paper received ※ 13 August 2021       paper accepted ※ 13 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)