Keyword: undulator
Paper Title Other Keywords Page
MOOA01 Overcoming Challenges during the Insertion Device Straight Section Component Production and Tuning Phase of the Advanced Photon Source Upgrade storage-ring, photon, vacuum, controls 6
 
  • J.E. Lerch
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Control DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APSU) scope for insertion devices (IDs) and ID vacuum systems is extensive. Thirty-five of the 40 straight sections in the storage ring will be retrofitted with new 4.8-meter-long Superconducting Undulators (SCUs) or a mix of new and reused Hybrid-Permanent Magnet Undulators (HPMUs). All 35 ID straight sections will require new vacuum systems and new HPMU control systems. Production is well underway at multiple manufacturing sites around the world for these components. Simultaneously, ID assembly and HPMU tuning is occurring onsite at Argonne National Laboratory (ANL). In addition to component production and assembly/tuning activities, our team also started the ID swap out program at the Advanced Photon Source (APS) in late 2020. This program allows us to remove HPMUs intended for reuse from the APS storage ring and retune them to meet the APSU magnetic specifications to reduce the tuning workload during dark time. These activities have presented technical and logistical challenges that are as unique as the components themselves. Additionally, the ongoing Covid-19 pandemic presented unforeseen challenges that required new work processes to be created to sustain pace and quality of work while maintaining the high workplace safety standards required at Argonne. This paper will summarize the many challenges we encountered during the course of the project and how they were overcome.
 
slides icon Slides MOOA01 [4.995 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOOA01  
About • paper received ※ 14 July 2021       paper accepted ※ 29 October 2021       issue date ※ 06 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB03 Commissioning and Prospects of the High-Dynamic DCMs at Sirius/LNLS controls, MMI, operation, hardware 25
 
  • R.R. Geraldes, J.L. Brito Neto, R.M. Caliari, M.A.S. Eleoterio, S.A.L. Luiz, M.A.L. Moraes, A.V. Perna, M.S. Silva, G.S. de Albuquerque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The High-Dynamic Double-Crystal Monochromator (HD-DCM)*,** is an opto-mechatronic system with unique architecture, and deep paradigm changes as compared to traditional beamline monochromators. Aiming at unmatching scanning possibilities and positioning stability in vertical-bounce DCMs, it has been developed since 2015 for hard X-ray beamlines at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). Two units are currently operational at the MANACA (macromolecular crystallography) and the EMA (extreme conditions) undulator beamlines, whereas a model for extended scanning capabilities in the energy range between 3.1 to 43 keV, the so-called HD-DCM-Lite, is in advanced development stage for two new beamlines, namely: QUATI (quick absorption spectroscopy), with a bending-magnet source; and SAPUCAIA (small-angle scattering), with an undulator source. In this work, online commissioning and operating results of the HD-DCMs are presented with emphasis on: the 10 nrad RMS (1 Hz - 2.5 kHz) pitch-parallelism performance; energy calibration; energy-dependent beam motion at sample; and flyscan with monochromator-undulator synchronization, which is a well-known control challenge at beamlines. To conclude, the Sirius HD-DCM family prospects, including the HD-DCM-Lite, are discussed.
*Geraldes, R. R., et al. "The New High-dynamics DCM for Sirius." Proc. of MEDSI 2016.
**Geraldes, R. R., et al. "The Status of the New High-Dynamic DCM for Sirius." Proc. of MEDSI 2018.
 
poster icon Poster MOPB03 [1.829 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB03  
About • paper received ※ 25 July 2021       paper accepted ※ 01 October 2021       issue date ※ 02 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB09 The Design and Manufacturing of Superconducting Undulator Magnets for the Advanced Photon Source Upgrade magnet-design, interface, photon, storage-ring 41
 
  • E.A. Anliker, Q.B. Hasse, Y. Ivanyushenkov, M. Kasa, Y. Shiroyanagi
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APSU) will include four full length Superconducting Undulators (SCUs). These SCUs require new undulator magnets to achieve the required performance of the new machine. The magnets are fabricated from low carbon steel and wound with NbTi superconductor. To meet the needs of the users of the new machine these magnets will be manufactured in different lengths and magnetic periods to accommodate SCUs in both inline and canted configurations. Because the magnets for the SCUs cannot be shimmed like permanent magnet undulators, they need to have very tight tolerances for the poles and the winding grooves. This poses unique manufacturing and fabrication challenges. This paper will cover the design of the 1.9 m long magnets for the inline SCUs, their measurement data, lessons learned from manufacturing, and an overview of design changes that were made for the magnets to be used in the canted SCU configurations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB09  
About • paper received ※ 21 July 2021       paper accepted ※ 29 October 2021       issue date ※ 05 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB10 The Advanced Photon Source Upgrade (APSU) Superconducting Undulator (SCU) Component Database (CDB) Utilization vacuum, database, photon, site 44
 
  • G.C. Avellar, E.A. Anliker, J.E. Lerch, J.G. Saliba, M.E. Szubert
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science under Control DE-AC02-06CH11357.
The Component Database (CDB) is a document management platform created for the use of the Advanced Photon Source Upgrade (APSU) Project. It serves two major functions: (1) a centralized location to link all data relating to field-replaceable upgrade components, and (2) a way to track the components throughout the machine’s 25-year lifetime. There are four (4) Superconducting Undulators (SCUs): two (2) Inline 16.5mm period devices, one (1) Canted 16.5mm period device, and one (1) Canted 18.5mm period device. Throughout the production process for these devices, tracking components between the different designs of SCU’s has proven to be a logistical issue, as there are uniform components among all 4 devices, but many unique components as well. As the scope evolved from a Research and Development (R&D) activity to a production scope, the CDB has been critical in communicating with a growing team, allowing anyone to identify a part or assembly and access all its design and manufacturing data. The 4.8-meter long SCUs are the first of their kind, requiring thorough onsite inspections, intricate assembly procedurals, and approved safety protocols. This is ideal information to document in an electronic traveler (e-traveler), which can then be attached to an item within the CDB. By providing a straightforward process for technicians to follow, the risk of miscommunication and unsafe practices are minimized. The CDB plays a vital role in simplifying and optimizing the transition of the SCU from an R&D unit to a production scope, from procurement to inspection, assembly and installation, and throughout the lifespan of machine maintenance.
 
poster icon Poster MOPB10 [0.744 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB10  
About • paper received ※ 28 July 2021       paper accepted ※ 05 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB11 The Advanced Photon Source Upgrade (APSU) Straight Section Vacuum Systems First Article Fabrication vacuum, photon, site, operation 47
 
  • M.E. Szubert, E.A. Anliker, G.C. Avellar, J.E. Lerch
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Control DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APSU) includes 40 straight sections, 35 of which will be outfitted with Superconducting Undulators (SCUs) or Hybrid-Permanent Magnetic Undulators (HPMUs). The vacuum systems for these devices are primarily fabricated from aluminum extrusions and are required to provide Ultra-High Vacuum continuity between storage ring (SR) sec-tors for a nominal distance of ~5.4 meters. Each vacuum system has unique fabrication challenges, but all first article (FA) components have been produced successfully. The FAs arrived onsite at ANL installation-ready, but have undergone functional testing activities to verify the production and vacuum certifications. The Insertion Device Vacuum Chamber (IDVC), used in HPMU sec-tors, is produced by SAES Rial Vacuum (Parma, Italy). The SCU vacuum system components are produced by two vendors, Cinel Instruments (Venice, Italy) and Anderson Dahlen (Ramsey, MN, USA). Based on the reliable outcomes and lessons learned from the FAs, production of the straight section vacuum systems is underway.
 
poster icon Poster MOPB11 [2.357 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB11  
About • paper received ※ 27 July 2021       paper accepted ※ 05 October 2021       issue date ※ 27 October 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC01 Mechanical Design of a Soft X-Ray Beam Position Monitor for the Coherent Soft X-Ray Scattering Beamline detector, photon, controls, synchrotron 56
 
  • C. Eng, S. Hulbert, C. Mazzoli, B. Podobedov
    BNL, Upton, New York, USA
  • D. Donetski, J. Liu
    Stony Brook University, Stony Brook, New York, USA
 
  Funding: U.S. Department of Energy (DOE) Office of Science Contract No. DE-SC0012704.
Achieving photon beam stability, a critical property of modern synchrotron beamlines, requires a means of high resolution, non-invasive photon beam position measurement. While such measurement techniques exist for hard x-ray beamlines, they have yet to be achieved for soft x-ray beamlines. A new soft X-ray beam position monitor (SXBPM) design based on GaAs detector arrays is being developed and will be installed in the first optical enclosure of the Coherent Soft X-ray Scattering (CSX) beamline at the National Synchrotron Light Source II (NSLS-II). The SXBPM assembly contains four water-cooled blade assemblies, each of which will have a GaAs detector assembly mounted within it, that can be inserted into the outer edges of the CSX undulator beam with sub-micron accuracy and resolution. The primary challenges in design of the SXBPM include: 1) mechanical stability of the assembly, 2) management of the heat load from the undulator x-ray beam to protect GaAs detector assemblies from unwanted illumination, 3) assembly compactness to fit within the first optical enclosure (FOE) of the CSX beamline, and 4) accessibility for modifications. Balancing the unique design requirements of the SXBPM along with their associated constraints has resulted in the design of a non-invasive beam position monitor which will be installed in the CSX FOE as a prototype for testing and iterative improvement. The ultimate goal is development of a widely useful SXBPM instrument for soft X-ray beamlines at high brightness synchrotron storage ring facilities worldwide. The following work seeks to present an overview of the current design of the SXBPM and an analysis of the challenges encountered and the proposed solutions by which they will be addressed.
 
poster icon Poster MOPC01 [1.213 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC01  
About • paper received ※ 29 July 2021       paper accepted ※ 16 September 2021       issue date ※ 07 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC07 Weldable Copper Chromium Zirconium Mask photon, synchrotron, radiation, synchrotron-radiation 65
 
  • T.J. Bender, O.A. Schmidt, W.F. Toter
    ANL, Lemont, Illinois, USA
 
  Funding: Argonne National Laboratory’s work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.
A novel design for a weldable copper chromium zirconium (CuCrZr) mask has been developed for use in Advanced Photon Source Upgrade (APSU) beamlines. In the past, welding has been avoided for CuCrZr; however, the approach this alternative utilizes promises to drastically reduce cost and lead time over traditional brazed CuCrZr and welded Glidcop mask designs. Multiple thermal analyses of the mask have predicted that it will meet required mechanical and thermal requirements suitable for high heat load applications. As of the writing of this paper, a prototype is being fabricated for installation and testing on the 28-ID Coherent High Energy X-ray (CHEX) beamline.
 
poster icon Poster MOPC07 [0.818 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPC07  
About • paper received ※ 15 July 2021       paper accepted ※ 13 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC04 A Compact X-Ray Emission (mini-XES) Spectrometer at CLS - Design and Fabrication Methods alignment, detector, shielding, operation 314
 
  • T.W. Wysokinski, M. Button, B. Diaz Moreno, A.F.G. Leontowich
    CLS, Saskatoon, Saskatchewan, Canada
 
  Funding: The research described in this paper was performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation (CFI) and others agencies.
A compact X-ray emission spectrometer (mini-XES) has been designed and fabricated for use at the Brockhouse undulator beamline*. The mini-XES uses cylindrical von Hamos geometry tuned for Fe K-edge and uses a Pilatus 100 K area detector from Dectris**. It is based on a general design implemented at the APS***. The mini-XES design was developed to be as simple to fabricate and as easy to operate as possible. We tried to minimize the number of components, so there are only two main parts that create a chamber. Those two components are joined and aligned by a NW-80 flange. From the beginning, the design was trying to achieve no tools assembly, alignment, and operation. For lower precision alignment we decided to use the centering ring of the NW-80 flange which, together with two posts integrated with the chamber, provides an adequate method for joining the two parts of the enclosure. We use level vials for horizontal adjustment of the holder for the 10 crystals. For high precision alignment of the holder of the crystal, we used the Thorlab KC1/M kinematic mount, which had the adjustment screws accessible from outside of the chamber. The fabrication was done in-house using uPrint SE Plus 3D Printer****. The first tests of the spectrometer were completed in the Brockhouse wiggler beamline and were successful. Future improvements will aim to reduce the background scatter and better position the detector, to improve the fill. Now that the relatively inexpensive design was tested and tried, there is an option to upgrade it to 3D printed tungsten or steel version that would intrinsically provide the required shielding.
* B. Diaz et al., Rev. Sci. Instrum 85, 085104 (2014)
** https://www.dectris.com
*** B. A. Mattern et al., Rev. Sci. Instrum 83, 023901 (2012)
**** https://support.stratasys.com
 
poster icon Poster WEPC04 [0.809 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPC04  
About • paper received ※ 09 July 2021       paper accepted ※ 17 October 2021       issue date ※ 10 November 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)